• 제목/요약/키워드: Hyperbolic-sine Function

검색결과 7건 처리시간 0.022초

Linear Bipolar OTAs Employing Hyperbolic Function Circuits and Triple-Tail Cell

  • Matsumoto, Fujihiko;Noguchi, Yasuaki
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.763-766
    • /
    • 2002
  • This paper proposes design of new linear bipolar OTAs composed of an hyperbolic function circuit and a triple-tail cell. Two types of the OTAs are presented; one employs a hyperbolic sine circuit and the other contains a hyperbolic cosine circuit. The linear input voltage ranges of the proposed OTAs are wider than that of the conventional triple-tail cell, though the power dissipation is smaller. The results of SPICE simulation show that satisfactory characteristics are obtained.

  • PDF

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권4호
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

신경망을 이용한 HSLA 강의 고온 유동응력 예측 및 통계방법과의 비교 (A Comparative Study of Material Flow Stress Modeling by Artificial Neural Networks and Statistical Methods)

  • 천명식;이준정
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.828-834
    • /
    • 1997
  • The knowledge of material stress-strain behavior is an essential requirement for design and analysis of deformation processes. Empirical stress-strain relationship and constitutive equations describing material behavior during deformation are being widely used, despite suffering some drawbacks in terms of ease of development, accuracy and speed. In the present study, back-propagation neural networks are used to model and predict the flow stresses of a HSLA steel under conditions of constant strain, strain rate and temperature. The performance of the network model is comparedto those of statistical models on rate equations. Well-trained network model provides fast and accurate results, making it superior to statistical models.

Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가 (Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material)

  • 김종민;김우곤;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

Taylor 급수를 이용한 617 합금의 장시간 크리프 수명 예측 (Taylor Series-Based Long-Term Creep-Life Prediction of Alloy 617)

  • 윤송남;김우곤;박재영;김선진;김용완
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.457-465
    • /
    • 2010
  • 본 연구에서는 McVetty 와 Monkman-Grant 의 모델에 기초하여 만들어진 새로운 크리프 수명예측 모델인 Taylor 급수(T-S) 모델을 제안하였다. 본 모델은 회귀분석에서 발생하는 오차를 줄이기 위하여 McVetty 모델에서 sinh 함수를 Taylor 급수에 의해 변환한 후 첫 3 개항을 취한 것으로서 모델중의 상수 값은 통계학적 방법인 최대가능성 기법을 이용하여 결정되었다. T-S 모델을 이용하여 Alloy 617 의 크리프 수명을 예측한 결과 Eno, 지수함수 및 Larson-Miller(L-M) 방법에 비해 더 정확한 예측을 하는 것으로 나타났다. 또한 T-S 모델은 특정 온도에서 크리프 수명 예측을 할 수 있는 등온 T-S(IT-S) 모델로 표현될 수 있었으며, IT-S 모델은 Alloy 617 의 장시간 크리프 수명예측에서 가장 좋은 예측을 하는 것으로 나타났다.