• Title/Summary/Keyword: Hyperbolic system

Search Result 170, Processing Time 0.028 seconds

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Frequency response of film casting process

  • Hyun, Jae-Chun;Lee, Joo-Sung;Jung, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.91-96
    • /
    • 2003
  • The sensitivity of the product to the ongoing sinusoidal disturbances of the process has been investigated in the film casting of viscoelastic polymer fluids using frequency response analysis. As demonstrated for fiber spinning process (Jung et al., 2002; Devereux and Denn, 1994), this frequency response analysis is useful for examining the process sensitivity and the stability of extensional deformation processes including film casting. The results of the present study reveal that the amplification ratios or gains of the process/product variables such as the cross-sectional area at the take-up to disturbances exhibit resonant peaks along the frequency regime as expected for the systems having hyperbolic characteristics with spilt boundary conditions (Friedly, 1972). The effects on the sensitivity results of two important parameters of film casting, i.e., the fluid viscoelasticity and the aspect ratio of the casting equipment have been scrutinized. It turns out that depending on the extension thinning or thickening nature of the fluid, increasing viscoelasticity results in enlargement or reduction of the sensitivity, respectively. As regards the aspect ratio, it has been found that an optimum value exists making the system least sensitive. The present study also confirms that the frequency response method produces results that corroborate well those by other methods like linear stability Analysis and transient solutions response. (Iyengar and Co, 1996; Silagy et al., 1996; Lee and Hyun, 2001).

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Three Body Problem and Formation of Binary System (3체 문제와 연성계의 형성)

  • Jae Woo Park;Kyu Hong Choi;Kyong Chol Chou
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.19-33
    • /
    • 1985
  • The singularities of differential Newtonian equation of motion in three body problem cause the loss of accuracy and the considerable increase of the computer time. These singularities could be eliminated during the process of regularization to transform the independent variables and the coordinate of Newtonian equations of motion. In this study, we calculated the positions and velocities of three body along the time scale to find out the unique solution of regularized Newtonian equations of motion with the $5^{th}$ order Runge-Kutta method by assuming the suitable initial velocities and positions. As the results of these calculations it is shown that the tripe stellar system eventually distintegrated, two of them formed a binary, and the last one escaped from this system with a hyperbolic orbit. This may suggest one possible explanation for the binary formation.

  • PDF

Phosphorus Budget of a River Reservoir, Paldang (하천형 호수인 팔당호의 인 수지)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

Changes in Physico-chemical Properties of Moss Peat Based Root Media and Growth of Potted Chrysanthemums as Influenced by Blending Ratios of Root Media in a C-channel Mat Irrigation System

  • Kang, Seung-Won;Hong, Jong-Won;Lee, Gung-Pyo;Seo, Sang-Gyu;Pak, Chun-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 2011
  • This experiment was conducted to investigate physical and chemical characteristics by volume fractions of root media using peatmoss, perlite, and vermiculite, along with effects on the growth of pot chrysanthemums (Dendranthema ${\times}$ grandiflorum 'Vemini') in a C-channel mat irrigation system. To evaluate the physico-chemical properties of 20 root media, the bulk density, particle density, total pore space, pore space, ash content, organic matter, pH, and electrical conductivity were measured and data were analyzed using principal component analysis (PCA). PCA scores revealed that physico-chemical properties changed by the blending of peatmoss, perlite, and vermiculite. The 20 root media were divided into three main groups by hierarchical cluster analysis. At the end of the experiment, the pH and EC of the root media were measured from media divided into four layers. The pH of root media without plants showed a strong linear relationship and the pH of root media with plants increased exponentially. The change of EC in the root medium was indicated as a hyperbolic curve. Plant growth characteristics according to growth in the 20 root media were analyzed by PCA. It was found that the mixing ratios of the root media affected plant growth characteristics. Therefore, mixing ratio is an important factor for pot-plant production in a subirrigation system.

A Usability Evaluation on the Visualization of Information Extraction Output (정보추출결과의 시각화 표현방법에 관한 이용성 평가 연구)

  • Lee Jee-Yeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.2
    • /
    • pp.287-304
    • /
    • 2005
  • The goal of this research is to evaluate the usability of visually browsing the automatically extracted information. A domain-independent information extraction system was used to extract information from news type texts to populate the visually browasable knowledge base. The information extraction system automatically generated Concept-Relation-Concept triples by applying various Natural Language Processing techniques to the text portion of the news articles. To visualize the information stored in the knowledge base, we used PersoanlBrain to develop a visualization portion of the user interface. PersonalBrain is a hyperbolic information visualization system, which enables the users to link information into a network of logical associations. To understand the usability of the visually browsable knowledge base, IS test subjects were observed while they use the visual interface and also interviewed afterward. By applying a qualitative test data analysis method. a number of usability Problems and further research directions were identified.