• Title/Summary/Keyword: Hyperbolic paraboloid shell

Search Result 9, Processing Time 0.026 seconds

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell (역우산형 쌍곡포물선 쉘의 유한요소해석)

  • Kwon, Hung-Joo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • This study presents the comparisons between the analysis results based on membrane theory and finite element analysis for the inverted umbrella-type hyperbolic paraboloid shell structure. The effects of the roof angle on the roof deflections, member forces of edge beams and ribs, and shell stress are also investigated with various roof angles. Results show that the membrane theory overestimates the member forces of edge beams and ribs. On the contrary, the shell stresses are underestimated in the membrane theory when compared to the results from the finite element analysis. The deflections of roof slabs by finite element analysis show drastic increasement as the roof angle decreases.

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells (모임지붕형 쌍곡포물선 쉘구조의 유한요소해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • In this study, mechanical role of edge beams in the gabled hyperbolic paraboloid shells was investigated through the comparisons of Finite element(FE) analysis results between the shells structures with and without edge beams. In addition, the effects of roof slope was studied. FE analysis showed that roof loads was directly transferred to the supports at corners by the arch action in the diagonal direction of the shells, thus, less member forces in the edge and ridge beams but higher stresses near supports were estimated than those from the membrane theory. When the edge beams were removed, stress concentration in the shells near the supports and the deflections along the shell edge were increased. Such phenomenon were intensified as the roof slope decrease. Thus, in gable hyperbolic paraboloid shell, the thickness of the shell near supports needs to be increased and careful investigation should be made in the cases when the roof height is low and/or the edge beams are removed.

Ultimate behavior of RC hyperbolic paraboloid saddle shell

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.507-521
    • /
    • 1997
  • The ultimate behavior of a reinforced concrete hyperbolic paraboloid saddle shell under uniformly distributed vertical load is investigated using an inelastic, large displacement finite-element program originally developed at North Carolina State University. Unlike with the author's previous study which shows that the saddle shell possesses a tremendous capacity to redistribute the stresses, introducing tension stiffening in the model the cracks developed are no longer through cracks and formed as primarily bending cracks. Even though with small tension stiffening effect, the behavior of the shell is changed markedly from the one without tension stiffening effect. The load-deflection curves are straight and the slope of the curves is quite steep and remains unchanged with varying the tension stiffening parameters. The failure of the shell took place quite suddenly in a cantilever mode initiated by a formation of yield lines in a direction parallel to the support-to-support diagonal. The higher the tension stiffening parameters the higher is the ultimate load. The present study shows that the ultimate behavior of the shell primarily depends on the concrete tensile characteristics, such as tensile strength (before cracking) and the effective tension stiffening (after cracking). As the concrete characteristics would vary over the life of the shell, a degree of uncertainty is involved in deciding a specified ultimate strength of the saddle shell studied. By the present study, however, the overload factors based on ACI 318-95 are larger than unity for all the cases studied except that the tension stiffening parameter is weak by 3 with and without the large displacement effect, which shows that the Lin-Scordelis saddle shell studied here is at least safe.

Behavior of RC Gabled Hyperbolic Paraboloid Shell (RC 쌍곡포물선 내림마루형식 지붕 쉘의 거동)

  • 민창식;이재석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.207-214
    • /
    • 1995
  • Muller-Scordelis RC Gabled Hyperbolic Paraboloid (HP) shell is divided by 40 40 mesh and analyzed using a finite element computer program which was developed by Mahamoud and Gupta and migrated to a Cray Y-U 00 at SERI. The results are compared with membrane theory and Muller-Scordelis's results. Comparing with Muller-Scordelis's result it shows that good agreements between two analyses, except a discrepancy in the normal deflections of the crown beam. The behavior of the crown beam is quite sensitive and needs further study. The analysis shows that Gabled HP shells do not behave as the typical shells according to the membrane theory. To design such Gabled HP shells we rather use a finite element analysis which simulates realistically membrane and honing actions of the shells.

  • PDF

Design and ultimate behavior of RC plates and shells: two case studies

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.171-190
    • /
    • 2002
  • Two cases of design are performed for the hyperbolic paraboloid saddle shell (Lin-Scordelis saddle shell) and the hyperbolic cooling tower (Grand Gulf cooling tower) to check the design strength against a consistent design load, therefore to verify the adequacy of the design algorithm. An iterative numerical computational algorithm is developed for combined membrane and flexural forces, which is based on equilibrium consideration for the limit state of reinforcement and cracked concrete. The design algorithm is implemented in a finite element analysis computer program developed by Mahmoud and Gupta. The amount of reinforcement is then determined at the center of each element by an elastic finite element analysis with the design ultimate load. Based on ultimate nonlinear analyses performed with designed saddle shell, the analytically calculated ultimate load exceeded the design ultimate load from 7% to 34% for analyses with various magnitude of tension stiffening. For the cooling tower problem the calculated ultimate load exceeded the design ultimate load from 26% to 63% with similar types of analyses. Since the effective tension stiffening would vary over the life of the shells due to environmental factors, a degree of uncertainty seems inevitable in calculating the actual failure load by means of numerical analysis. Even though the ultimate loads are strongly dependent on the tensile properties of concrete, the calculated ultimate loads are higher than the design ultimate loads for both design cases. For the cases designed, the design algorithm gives a lower bound on the design ultimate load with respect to the lower bound theorem. This shows the adequacy of the design algorithm developed, at least for the shells studied. The presented design algorithm for the combined membrane and flexural forces can be evolved as a general design method for reinforced concrete plates and shells through further studies involving the performance of multiple designs and the analyses of differing shell configurations.

Design versus Ultimate Behavior of Reinforced Concrete Hyperbolic Paraboloid Saddle Shell (철근콘크리트 쌍곡 '안장' 쉘의 설계 예와 극한거동)

  • Min, Chang Shik;Gupta, Ajaya K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.807-814
    • /
    • 1994
  • One case of pointwise limit design is performed for a hyperbolic paraboloid saddle shell(originally used by the Lin-Scordelis) to check the design strength against a consistent design loads, therefore, to verify the adequacy of current design practice for reinforced concrete shells. The design method which was based on stresses from membrane analysis in conjunction with pointwise limit state design equations shows a good performance, which means that the design method gives a lower bound on the ultimate load. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Combined membrane and flexural reinforcement design in RC shells and ultimate behavior (막응력과 휨을 고려한 RC 쉘의 설계와 극한거동)

  • 민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.405-411
    • /
    • 1998
  • An iterative numerical computational algorithm is presented to design a plate of shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i. e., for each sampling point, from the equilibrium between applied and internal forces. One case of design is performed for a hyperbolic paraboloid saddle shell (originally used by Lin and Scordelis) to check the design strength against a consistent design load, therefore, to verify the adequacy of design practice for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load from 14-43% for an analysis with relatively low to high tension stiffening, ${\gamma}$ =5~20 cases. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Investigation on R/C Hyperbolic Paraboloid (HP) Saddle Shell Ultimate Behavior (R/C 쌍곡 포물선 '안장' 쉘의 극한 거동 연구(研究))

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 1993
  • Nonlinear inelastic behavior of an HP saddle shell has been examined by a finite element computer program developed on a Cray Y-MP. The mesh convergence is studied using three progressively refined finite element mesh models, $16{\times}16$, $32{\times}32$ and $64{\times}64$, for the elastic and inelastic analyses. It is shown that the $32{\times}32$ mesh model gives a solution that is very close to that given by the $64{\times}64$ mesh model, thus, showing a convergence. The inelastic analysis shows that the shell has a tremendous capacity to redistribute the stresses. At the ultimate, the concrete cracks and the reinforcement yieldings are spread out all over the shell, indicating that the stress distribution in the shell is approaching that given by the classical membrane theory. The present computer program provides a very useful tool for evaluating the nonlinear ultimate behavior of concrete shells during the design process.

  • PDF