• Title/Summary/Keyword: Hynobius leechii

Search Result 44, Processing Time 0.023 seconds

Developmental Abnormality in Agricultural Region and Toxicity of the Fungicide Benomyl on Korea salamander, Hynobius leechii (한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성효과)

  • Choi, Yeoung-Ju;Yoon, Chun-Sik;Park, Joo-Hung;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.198-212
    • /
    • 2002
  • A numerical variation and abnormalities were studied on egg bags and embryos of Korean salamander, Hynobius leechii from agricultural habitat. The teratogenic and toxic effects of fungicide benomyl were also investigated with early embryos from non-agricultural habitat. We collected 144 egg bags from agricultural region, and 3418 of early embryos were contained. The lengths of egg bags were varied from 10 to 23 cm and the most frequent length was 19 cm. The number of embryos was varied from 7 to 43, and the most frequent range was 22 to 26. Spontaneous abnormalities were occurred in 406 embryos among 116 egg bags, and 24 kinds of external abnormalities were found. Individuals showing severe external defect were histologically studied and they showed optic dyspalsia, thyroid carcinoma, somatic muscular dysplasia, partial biaxial structure, decrease of red blood cells in the heart, cephalic degeneration and intestinal dysplasia. 385 embryos from non-agricultural region were exposed to 200 nM${\sim}$ 1 ${\mu}$M of benomyl at blastula or gastrula for 12 days. All embryo were dead in the concentration of 1 ${\mu}$M (LD$_{100}$) and 75% of embryos were dead in 800nM of benomyl. Speciflc effect due to benomyl was acrania or cephalic dysplasia and this restult suggests that the benomyl inhibit stongly to the development of neural tissue. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of the movement of neural crest cells.

Vertebrate Fauna, Speciation and Geological History in the Cheju Island (제주도의 척추동물상과 종분화 및 지사학적 역사)

  • 심재한;박병상
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.42-57
    • /
    • 1998
  • Cheju island had that a fresh water Pisces composed of 9 Orders, 12Families, 24 Species, Amphibians composed of 2 Orders, 6 Families, 9 Species, Reptiles composed of 2 Suborders, 5 Families, 10 Species, Aves composed of 18 Orders, 49 Families, 236 Species and Mammalian composed of 6 Oredrs, 9 Families, 16 Species. So, total vertebrate's fauna were 35 Oredrs, 2 Suborders, 80 Families, 4 Subfamilies and 295 Species. Endemic species of the Cheju island were Mustela sibirica quelpartis, Apodemus agrarius vhejuensis, Micromys minutus hertigi and Crocidura russula quelpartis, Ageithalos caudatus trivirgatus, Sitta europaea bedfordi, Eophona personata personata and Dendrocopos oeucotos quelpartis, Troglodytes troglodytes fumigatus, Parus major minor, Cettia diphone cantans and Hynobius leechii quelpartis. Especially, Sibynoghis collaris and Anguilla mauritiana were only habitated in the Cheju island. And the Cheju island was formed in extending from Plieocene to Pleistocene. Differentiation of species was continued by geological isolation 0.3 million years that repeating glacial epoch and interglacial epoch.

  • PDF

Lysosomal Acid Phosphatase in Regenerating Salamander Limbs Studied with Monoclonal Antibodies (리소솜 Acid Phosphatase에 대한 단일 항체를 이용한 도롱뇽 다리 재생 연구)

  • 주봉건;박상렬;최의열;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.4
    • /
    • pp.426-436
    • /
    • 1996
  • In previous studies, we have shown that lysosomal add phosphatase (LAP) activity increases at the dedifferentiation stage in the regenerating larval limbs of salamander, Hynobius leechii. Monoclonal antibodies against LAP were generated to determIne the spatial and temporal distribution of the protein In the regenerates.A total of 22 monoclonal antihodies recognizIng different epftopes of the protein were obtained, of which five strongly stained the regenerating limb by imunohistochemistry. in LAP immunohistochemical examination, LAP showed distribution coincident with the state of dedifferentiation, both spatially and temporally, in the limb regenerates. When unfractioned protein of regenerating salamander limbs were separated by gel electrophoresis and immunoblotted, the antibodies recognized a single protein band of 53 kl)a, which comigrates with a monomerlc subunit of IAR Using the anti-IAP antibodIes as probe, we investigated the cross-reactivities of LAPs from other sources. The immunoreadive bands on Western blots appeared to be the same In molecular mass-53 kl)a in axoloti and Xenopus, but no protein band was detected in mouse, Drosophila, or C. elegans.These results show that the antibodies generated in this study spedfically recognize Hynoblus leeclili IAp and that IAPs may be highiy conserved among amphibians. Furthermore, the distdbution of the protein is consistent with a role for LAP in the dedifferentiation process of limb regeneration.

  • PDF

Dedifferentiation State Specific Increase of Trypsin- and Chymotrypsin-like Protease Activities during Urodele Limb Regeneration and Their Enhancement by Retinoic Acid Treatment (유미양서류 다리 재생 기간중 탈분화 시기 특이적 트립신, 키모트립신 유사 단백질 효소의 활성도 증가)

  • 이은호;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Treatment of regenerating amphibian limbs with retinoic acid (RA) is known to induce paftern duplication, which is closely related to the extent of dedifferentiation. In the present study, the activities of trypsin- and chymotrypsin-like proteases are examined to delineate a possible role in the process of dedifferentiation in the regenerating limbs of urodeles, the Korean salamander (Hynobius leechii) and the Mexican axolod (Ambystoma mexicanum). Specifically, we were interested to know if there is any correlation between trypsin- and chymotrypsin-like protease activities and the state of dedifferentiation which is augmented by RA treatment. We were also interested in expoloring if there is any species-specific difference in the profile of enzyme activities during limb regeneration. The results showed that the activities of these two enzymes reached a peak level at dedifferentiation stage, and RA treatment caused elevation of their activities, especially in the case of trypsin-like protease. The increase of trypsin-like protease activity after RA treatment was pronounced in the Korean salamander, which might reflect a species-specific responsiveness to RA. The present results imply that trypsin and chymotrypsin or similar proteases may play an active role in the process of dedifferentiation in regenerating limbs, and that trypsin or trypsin-like eryrymes might be involved in the RA-evoked enhancement of dedifferentiation which precedes overt pattern duplication.

  • PDF

Herpetofauna of Kojedo in Hallyo-Haesang National Park (한려해상국립공원 거제도 지역의 양서.파충류상)

  • 박병상
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.4
    • /
    • pp.381-388
    • /
    • 1999
  • Herpetofauna of Kojedo was surveyed in both May 3, 1998~May 5, 1998 and Nov. 7, 1998~Nov. 8, 1998. 9 species of 6 families in Amphibia and 9 species of 3 families in Reptile were observed by survey and heard the evidence in this study. It was observed relatively rich biota to the Kayasan, Sokrisan, Soraksan and Chirisan National Park in Korea. There were Specific Endangered Animal assigned by Minister of Environment such as Hynobius leechii, Bufo bufo gargarizans, Rana dybowskii, Elaphe rufodorsata, Zamenis spinalis, Dinodon rufo-zonatum rufozonatum, Agkistrodon blomhoffii bevicaudus and Agkistrodon saxatilis. Especially Rana catesbeiana which was originated from North America was very abundantly distributed at one pond. So Rana catesbeiana should be controlled for stable environmental condition of endemic Amphibia distribution.

  • PDF

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

Dedifferentiation Correlates with the Expression of Lysosomal Acid Phosphatase in the Limb Regenerates of Mexican Axolotl (멕시코산 엑소로틀 다리 재생조직의 탈분화와 리소솜 산성탈인산화효소의 발현)

  • Seo, Kwang-Seok;Park, Sook-Kyung;Ju, Bong-Gun;Jeon, Sang-Hak;Kim, Won-Sun
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1998
  • The lysosomal acid hydrolases including lysosomal acid phosphatase (LAP) are believed to play an important role in intracellular and extracellular degradation. LAP was reported to increase its activity in dedifferentiation stage during urodele limb regeneration. In the paresent study, LAP localization in the Mexican axolotl (Ambystoma mexicanum) limb regenerates was investigated by immunohistochemistry. LAP immunoreactivity with monoclonal antibody against Korean salamander (Hynobius leehii) LAP was observed mainly in the wound epidermis, blastema cells, muscle, and cartilage which were under dedifferentiation process in axolotl limb regenerates. Moreover, LAP immunoreactivity increased gradually during the early phase of lib regeneration and reached the peak level at dedifferentiation stage. However, as redifferentiation begans, LAP immunoreactivity decreased slowly to the basal level. Retinoic acid (RA) which is known to induce skeleton pattern duplication in regenerating urodele limb appears to enhance LAP immunoreactivity. In the RA-treate limg regenerates, LAP immunoreactivity was higher than in the normal regenerates. In addition, the LAP expression period was more extended in the RA treated regenerates than in the normal regenerates. These results suggest that RA is involved in the extension of dedifferentiation state in RA-treated limb regenerate.

  • PDF

A Comparison of the Lactate Dehydrogenase (LDH) Isozyme Patterns in Vertebrate Cerebrum and Retina (脊椎動物 腦와 網膜에 있어서 Lactate Dehydrogenase Isozyme Pattern의 比較)

  • Kim, Soon Ok;Park, Sang Yoon
    • The Korean Journal of Zoology
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1979
  • From the experimental results of cellulose acetate membrane electrophoresis we concluded the followings in explaining the LDH isozyme patterns found in the retina and cerebrum of vertebrata. Lactate dehydrogenase of the retina and cerebrum of both Carassinus carassinus and Cyprinus carpio was found to have one diffused band located between $LDH_2$ and $LDH_1$. LDH isozyme patterns of heart, pectoral muscle, liver and stomach of the Cyprinus carpio had the same diffused band in all organs. LDH isozyme patterns of the cerebrum of Hynobius leechii and Rana nigromaculata were observed to be different, in Hynobius leeichi a single band moved to the negative pole and two bands of $LDH_5$ and $LDH_4$ were obtained in the Rana nigromaculata. The retina and cerebrum of Natrix tigrina lateralis were observed as one band but amyda maakii had different LDH isozymes of the retina and cerebrum. The retina of Amyda maakii had five distinct LDH isozyme bands which had decreasing activity in the order of $LDH_5, LDH_4, LDH_3, LDH_2 and LDH_1$. The cerebrum of Amyda maakii had one band like Natrix tigrina lateralis but it moved to the negative pole. LDH isozymes in the retina and cerebrum of Gallus gallus domesticus and Melopsittacus undulatus showed one band. Five characteristic LDH isozyme bands were obtained from the retina of mammals, Oryctolagus cuniclus, Canis familiaris, Sus scrofa bos taurus and in the cerebrum of mouse, albino rat, Rhinolophus ferrum-equinum kokai.

  • PDF

A Histological Study of Skin on Some Amphibia Inhabitated Chiri Mt. and Moodeung Mt. (지리산과 무등산에 서식하는 한국산 양서류의 피부에 관한 연구)

  • 이승휘;권은호;신영희
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.205-209
    • /
    • 2004
  • For the purpose of this study was accumulating histological data of skin some amphibia near Chiri Mt. and Moodeung Mt. Analyzed Anura and Caudata were Rana nigromaculata, Rana rugosa, Rana catesbeiana, Hynobius leechii. The histological prepared skin of frogs were compared, of which were selected from dorsal and belly. Excretory glands were identified granular glands, mucous glands, serous glands, vacuoles and excretory ducts in epidermal and dermal tissue. And developing excretory glands, well developed excretory glands and post developing excretory glands were identified also. These results were significantly as basal data on the comparative epidermal skin histology on some Korean Amphibia. Probably these glands of amphibian skin could be infered which were adaptable structure to ecological suffered condition. Following study of these results were more considerable data for comparative histology, comparative anatomy and comparative physiology and ecology of Amphibia.

The Study of Spontaneous Developmental Abnormalities and Toxicology of Benomyl and Its Metabolite on Salamander, Hynobius leechii.

  • Park, Yong-Uk
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2005.12a
    • /
    • pp.38-45
    • /
    • 2005
  • The egg bags of Korean salamander(Hynobius leechii) were collected from farmlands in Gyeongsangnam-do area. The assumed breeding time, numerical variation of embryos in each egg bag, mortality and the rates of abnormalities were investigated. The toxicity of benomyl, the metabolite carbendazim and BIC which were frequently spread in agricultural area and caused spontaneous embryonic malformation was investigated. The assumed breeding time between the end of February and the end of March has the difference about a month because of a habitat and it takes about 2 or 3 weeks from laying eggs to hatching. The length of each egg bag and the number of embryos were very varied in each area. It is due to geographical variation. Among egg bags in total study area, only 406 of egg bags(17.70% of total egg bags) developed all of embryos to normal larvae, and 78.49% of total embryos were normally developed. The patterns of spontaneous embryonic malformation were 26 species from A to Z and the abnormal patterns in individual were 8 species and above. the geographical differences about the abnormal pattern were identified and 11 habitats categorized 4 groups. The most frequent abnormality in Gyeongsangnam-do area is the dysplasia of external gill. The caudal dysplasia, abdominal blister and dysplasia of fin were also frequently observed. Individuals showing severe external defect were histologically studied and they showed retinal hypo-pigmentation, thyroid carcinoma, somatic muscular dysplasia, degeneration of cephalic neuron and various organ dysplasia. Benomyl and carbendazim were treated by 10pM$^{\sim}$10uM and BIC was treated by 1$^{\sim}$40ppm to know the effect of toxicity about toxic substance of salamander. After benomyl was treated, a survival rate was sharply dropped from 2 to 8 days. $LC_{100}$ identified in $1{\mu}M$, $LC_{50}$ identified between 100nM and $1{\mu}M$. $EC_{50}$ was assumed between 10nM and 100nM. The prevalent external malformation was abdomen swelled abnormally and histo-pathological effects were abdomen, neural tube and lens hernia. This suggests that benomyl is the toxicitic substance which inhibits the development of digestive system and nervous system. The result of treated carbendazim was similar to that of the treated benomyl. The survival rate is sharply dropped between 2 and 6 days. $LC_{100}$ was identified $1{\mu}M$ and $LC_{50}$ was identified between 10nM and 100nM. This shows that cabendazim has stronger lethal toxicity than benomyl. Ventral blister, eye dysplasia and cephalic dysplasia in the individual of external malformation mean that cabendazim affected nervous system much more than benomyl. Because the toxicity of BIC affected less in the beginning but affected more in the near hatching period, the period causing toxicity is somewhat different. $LC_{100}$ identified near 40ppm and $LC_{50}$ identified near 25ppm. The external defect shows mainly ventral blister and histo-pathological results show intestinal deformities. This result suggests the BIC inhibited strongly the development of digestive system. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of movement of neural crest cells of benomyl. These abnormal developments may be caused by the rupture of epithelium, the loss of microtubule, the reduction of spindle size, the inhibition of spindle assembly formation, the destruction of spindle poles of carbendazim. These abnormal developments may be caused cytotoxicity by inhibition of the synthesis of a number of macromolecules and similar reaction the inhibition of benomyl.

  • PDF