• Title/Summary/Keyword: Hydroxylammonium

Search Result 8, Processing Time 0.024 seconds

Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents (수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출)

  • Kim, Sohee;Kwon, Younja;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.317-322
    • /
    • 2020
  • Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.

Synthesis of high capacity ionic oxidizer; HAN[Hydroxylammonium Nitrate] (고에너지 이온성 산화제 HAN [Hydroxylammonium nitrate] 합성공정 연구)

  • Kim, So-Hee;Park, Yeon-Soo;Kim, Wooram;Park, Mi-Jeong;Kwon, Yoon-Za;Jo, Young min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.165-173
    • /
    • 2019
  • Hydrazine[$N_2H_4$] is a typical propellant for a rocket fuel in the field of aerospace. Since it is very toxic and harmful to the environment, various environmentally-friendly propellants have been developed. In this study, relatively a safe propellant, hydroxylammonium nitrate[$NH_3OHNO_3$], was prepared via a neutralization reaction of hydroxylamine[$NH_2OH$] and nitric acid[$HNO_3$]. FT-IR was used to analyze the chemical composition, chemical structure and functional groups of HAN. Thermogravimetric analysis showed the decomposition temperature of HAN. Ion chromatography was also used to evaluate the content of nitrate ions. It was proved that the peaks of FT-IR at $3161cm^{-1}$ and $1324cm^{-1}$ indicates the functionalities of N-H and N-O present in HAN. The decomposition temperature of HAN synthesized at pH 5 to 7 was $120-140^{\circ}C$, and pH 8 resulted in higher decomposition temperature than $140^{\circ}C$. Meanwhile, the sample obtained from pH 6-7 showed the concentration of nitric acid ion with 70%.

Oxime Generation of Silk Fibers by Hydroxlammonium choride treatment

  • Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • This study was aimed to explain the essence of Hydroxylammonium hydrochloride(H.A.) effect on degummed silk fiber increasing the colour sites due to oxime generating reaction. H.A. in aqueous solution caues to increase the amount of [H+] and reduce pH values as the concentration of H.A. increases. The rate of [H+] absorption of silk fiker in acidic solution differs on the basic of solution pH and shows a specific uptake in each pH, the lower the pH of solution, the higher the amount [H+] absorption. The pH of solution after treating of silk fiber in H.A. and HCl, showed more remaining [H+] in H.A. solution due to [H+] releasing under the procedure of oxime production. Also it was revealed that in higher concentration of H.A. the reaction for oxime fixation in silk fiber carried out stonger and as a result the bigger gap with acid uptake curve appeared. FT-IR analysis of silk fiber treated with H.A. revealed the creating of intermolecular H-bond at the 2,981-2.930 cm-1, which was not appeared for nontraeted silk fibers and shows H-bond between N-OH group in oue chain and C=) group in another chain of silk protein. Colourimetry of dyed silk fiber after H.A. tratment showed that the silk fiber treated with the high concentration of H.A. compare to low concentration, absorbed more dyeing molecules and so Showed less percontage of Whiteness.

  • PDF

The Effect of Metallothionein on the Activity of Enzymes Invelved in Remival of Reactive Oxygen Species

  • Go, Mun Ju;Kim, Hui Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.362-366
    • /
    • 2001
  • To show the effects of metallothionein (MT) on the activity of enzymes involved in the removal of reactive oxygen species, MT has been added to the assay systems of superoxide dismutase (SOD), catalase and peroxidase. We have used assay systems of SOD based on NADPH oxidation and nitrite formation from hydroxylammonium chloride as an assay of superoxide breakdown rate. The two assay systems showed different results at the high concentration of MT. MT showed the scavenging of superoxide in the SOD assay system in the presence and absence of SOD. MT added to the SOD assay system behaved as an activator of SOD, but apo-MT behaved as an inhibitor. When MT was added to the assay system in the presence of a fixed amount of SOD, the breakdown rate of superoxide increased. The effects of MT on the decomposition of hydrogen peroxide and the activity of catalase and peroxidase decomposing hydrogen peroxide were evaluated. MT decreased the activities of catalase and peroxidase. We have concluded that the function of MT as an antioxidant might effect the level of superoxide scavenging and not the level of hydrogen peroxide.

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

Identification of the Antioxidative Function of Metallothionein by Oxidation of NADPH and Production of Nitrite (NADPH의 산화반응과 아질산 생성반응에 의한 Metallothionein 의 항산화적 기능 확인)

  • Kim Kwan-Chun;Kim Joon-Tae;Kim Hee-Joung
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.52-57
    • /
    • 2006
  • Metallothioneins(MTs) belong to the class of low molecular weight proteins. Recently, it has been suggested that MTs may playa direct role in cellular defense against oxidative stress by functioning as antioxidants. Oxidative damage to different cellular components makes a major contribution to many pathogenenesses. Several studies have demonstrated that MT is able to quench a wide range of reactive oxygen species at a higher efficiency than other well known antioxidants such as superoxide dismutate(SOD). The present study was designed to evaluate the effect of MT on the activities of the reactive oxygen species removal system. MT showed the scavenging of superoxide in the SOD assay system in the presence or absence of SOD. When MT was added to nicotinamide adenine dinucleotide phosphate(NADPH) oxidation system in presence of fixed amount of SOD increase the breakdown rate of superoxide. When MT was added to the system that form nitrite from hydroxylammonium chloride, the formation of nitrite was inhibit. We concluded that the function of MT as antioxidant might have an effect on the level of superoxide scavenging.

Synthesis of Energetic Metal-free Cyclo-pentazolate Salts Through Efficient Preparation Method (효율적인 제조 방법을 통한 비금속-펜타졸 염화합물의 합성)

  • Kown, Kuktae;Kim, Seunghee;Lee, Sojung;Yoo, Hae-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • The development of excellent high-energy materials has progressed in the direction of synthesizing compounds with high nitrogen content, ultimately oriented toward the form of polynitrogen. As cyclo-N5-, a type of polynitrogen, is synthesized as sodium pentazolate(NaN5) and the results of various metal and non-metal compounds have been studied, the usage of polynitrogen compounds is attracting attention. However, since the known synthesis and purification method of NaN5 are very extreme and complicated, it is essential to improve the process in order to increase the utility of the pentazolate compounds in the future. In this study, only a simple filtration method was applied to purify the NaN5, and based on this, two non-metal pentazolate salt compounds were successfully synthesized.

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.