DOI QR코드

DOI QR Code

Synthesis of high capacity ionic oxidizer; HAN[Hydroxylammonium Nitrate]

고에너지 이온성 산화제 HAN [Hydroxylammonium nitrate] 합성공정 연구

  • Kim, So-Hee (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Park, Yeon-Soo (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Wooram (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Park, Mi-Jeong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kwon, Yoon-Za (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jo, Young min (Department of Environmental Science and Engineering, Kyung Hee University)
  • 김소희 (경희대학교 환경응용과학과) ;
  • 박연수 (경희대학교 환경응용과학과) ;
  • 김우람 (경희대학교 환경응용과학과) ;
  • 박미정 (경희대학교 환경응용과학과) ;
  • 권윤자 (경희대학교 환경응용과학과) ;
  • 조영민 (경희대학교 환경응용과학과)
  • Received : 2019.02.09
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

Hydrazine[$N_2H_4$] is a typical propellant for a rocket fuel in the field of aerospace. Since it is very toxic and harmful to the environment, various environmentally-friendly propellants have been developed. In this study, relatively a safe propellant, hydroxylammonium nitrate[$NH_3OHNO_3$], was prepared via a neutralization reaction of hydroxylamine[$NH_2OH$] and nitric acid[$HNO_3$]. FT-IR was used to analyze the chemical composition, chemical structure and functional groups of HAN. Thermogravimetric analysis showed the decomposition temperature of HAN. Ion chromatography was also used to evaluate the content of nitrate ions. It was proved that the peaks of FT-IR at $3161cm^{-1}$ and $1324cm^{-1}$ indicates the functionalities of N-H and N-O present in HAN. The decomposition temperature of HAN synthesized at pH 5 to 7 was $120-140^{\circ}C$, and pH 8 resulted in higher decomposition temperature than $140^{\circ}C$. Meanwhile, the sample obtained from pH 6-7 showed the concentration of nitric acid ion with 70%.

국문 우주항공 분야에서 널리 쓰이고 있는 하이드라진[hydrazine, $N_2H_4$]은 로켓연료로 사용되는 대표적인 추진제이지만 환경에 유해하고 독성이 강하다는 단점이 존재한다. 따라서 친환경적이고 독성이 적은 추진제가 다양하게 개발되고 있다. 본 연구에서는 수산화아민[hydroxylamine, $NH_2OH$]을 출발물질로 하여, 질산[nitric acid, $HNO_3$]과 산-염기 반응을 통해 얻어지는 친환경 추진제 HAN[hydroxylammonium nitrate, $NH_3OHNO_3$]의 물리 화학적 특성에 대하여 적외선분광법을 이용하여 합성물의 조성, 화학구조 및 작용기를 관찰하였고, 열중량분석을 통해 HAN의 분해온도를 확인하였다. 이온 크로마토그래피를 통해 합성한 HAN에 함유되어 있는 질산이온의 함량을 측정하였다. 즉, N-H와 N-O의 IR peak가 $3161cm^{-1}$$1324cm^{-1}$에서 각각 나타나는 것을 통해 생성한 화합물이 HAN임을 확인하였고, pH 5-7 근처에서 합성한 HAN은 분해온도가 $120-140^{\circ}C$인 반면, pH 8 정도인 HAN은 분해온도가 $140^{\circ}C$ 이상임을 알 수 있었다. 한편, pH 6-7 사이에서 HAN을 합성하였을 때, 가장 높은 질산이온의 농도는 70%인 것으로 나타났다.

Keywords

HGOHBI_2019_v36n1_165_f0001.png 이미지

Fig. 1. Chemical structure of ionic HAN.

HGOHBI_2019_v36n1_165_f0002.png 이미지

Fig. 2. IR spectrograms of used chemicals and HAN focusing on N-H functionalities.

HGOHBI_2019_v36n1_165_f0003.png 이미지

Fig. 3. IR spectra of the used chemicals and prepared HAN focusing on N-O functionalities.

HGOHBI_2019_v36n1_165_f0004.png 이미지

Fig. 4. IR peak spectra of HAN depending on its pH.

HGOHBI_2019_v36n1_165_f0005.png 이미지

Fig. 5. Thermal properties of HAN in terms of its pH by using TGA.

Table 1. Synthesized ionic HAN compounds according to nitric acid volume

HGOHBI_2019_v36n1_165_t0001.png 이미지

Table 2. IR frequencies of N-H functionalities for HAN and reference compounds

HGOHBI_2019_v36n1_165_t0002.png 이미지

Table 3. IR frequencies of N-O functionalities for HAN and reference compounds

HGOHBI_2019_v36n1_165_t0003.png 이미지

Table 4. Quantitative contents of NO3- in prepared HAN solution

HGOHBI_2019_v36n1_165_t0004.png 이미지

Table 5. Density and content according to pH change of HAN

HGOHBI_2019_v36n1_165_t0005.png 이미지

References

  1. C. Y. HAN, S. K. Kim, S. H. Won, J. W. Chae, "Monopropellant Thrusters for a Satellite", Current Industrical and Technological Trends in Aerospace, Vol.11, No.2 pp. 119-126, (2013).
  2. G. A. Neff, The Decomposition of Hydroxylammonium Nitrate under Vacuum Conditions, Master's Thesis, university of Western Michigan, Michigan, USA, (2016).
  3. I. H. Cho, S. Y. Han, "Review of Green Propellant Thruster for Recent Space Launcher Vehicle", Current Industrical and Technological Trends in Aerospace, Vol.13, No.2 pp. 167-177, (2015).
  4. J. U. Woo, S. H. Choi, Y. C. Park, "The study of propellant characteristic for low carbon & high nitrogen oxidizer", Journal of the Korean Society of Propulsion Engineers, Vol.21, No.2 pp. 26-31, (2017). https://doi.org/10.6108/KSPE.2017.21.2.026
  5. K. Mahanta Abhay, D. Pathak Devendre, "Recent Advances in Development of Eco-friendly Solid Composite Propellants for Rocket Propulsion", Research Journal of Chemistry and Environment, Vol.14, No.3 pp. 94-103, (2010).
  6. K. Farhat, C. Kappenstein, Y. Bantonneau, "Thermal and Catalytic Decomposition of AN, ADN and HNF-Based Ionic Monopropellants", 44th American Institute of Aeronautics and Astronautics, pp. 4209-4219, (2008).
  7. J. S. Lee, J. M. Huh, S. J. Cho, S. H. Kim, S. J. Park, S. K. Kim, "Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster", Journal of the Korean Society for Aeronautical and Space Sciences, Vol.14, No.4 pp. 299-304, (2013).
  8. J. P. Agrawal High Energy Materials-Propellants: Explosives and Pyrotechnics, pp. 231-233, Wiley-VCH, (2010).
  9. T. Liggett, Process for producing concentrated solution of hydroxylammonium nitrate and hydroxylammonium perchlorate US patent 4066736A (1978).
  10. K. L. Wagaman, Synthesis of hydroxylamine salts US patent 4956168A (1990).
  11. T. Liggett, Hydroxylammonium nitrate process US patent 5182092A (1993).
  12. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, p.10815-10837, John WIley & Sons Ltd, Chichester, (2000).
  13. D. W. Cawlfield, Process for the production of high purity hydroxylammonium nitrate US patent 5213784A (1993).
  14. G. Bengtsson, S. Fronaeus, L. Bengtsson-Kloo, "The kinetics and mechanism of oxidation of hydroxylamine by iron(III)", Journal of the Chemical Society Dalton Transactions, Vol.12, Issue.12, pp. 2548-2552 (2002).
  15. C. W. Siong, Characterization & analysis on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures in microreactors, PhD thesis, university of Nottingham, Nottingham, UK, (2017).
  16. S. Hoyani, R. Patel, C. Oommen, R. Rajeev, "Thermal stability of hydroxylammonium nitrate(HAN):Role of preparatory routes", Journal of Thermal Analysis and Calorimetry, Vol.129, No.2 pp. 1083-1093, (2017). https://doi.org/10.1007/s10973-017-6287-3
  17. J. B. Wei, B. D. Shaw, "Influences of pressure on reduced-gravitiy combustion of HAN-methanol-water droplets in air", Combustion and Flame, Vol.146, No.3 pp. 484-492, (2006). https://doi.org/10.1016/j.combustflame.2006.04.016
  18. D. Amariei, L. Courtheoux, S. Rossignol, Y. Batonneau, C. Kappenstein, M. Ford, N. Pillet. "Influence of the fuel on the thermal and catalytic decompositions of ionic liquid monopropellants", 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, pp. 3980, (2005).
  19. B. H. Kuo, A Study on the Electrolytic Decomposition of HAN-Based Propellants for Microthruster Applications, Master Thesis, Pennsylvania state University, Pennsylvania, USA, (2010).
  20. F. A. Miller, C. H. Wilkins, "Infrared Spectra and Characteristic Frequencies of Inorganic Ions", Journal of the American Chemical Society, Vol.24, No.8 pp. 1253-1294, (1952).
  21. M. Rozenberg, G. Shoham, "FTIR spectra of solid poly-l-lysine in the stretching NH mode range", Biophysical Chemistry, Vol.125, Issue.1, pp. 166-171, (2007). https://doi.org/10.1016/j.bpc.2006.07.008
  22. L. Courtheoux, D. Amariei, S. Rossignol, C. Kappenstein. "Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants" Applied Catalysis B:Environmental, Vol.62, Issue.3-4, pp. 217-225, (2006). https://doi.org/10.1016/j.apcatb.2005.07.016