• 제목/요약/키워드: Hydroxyapatite-beta tricalcium phosphate

검색결과 47건 처리시간 0.024초

성인 치조골 내 결손부에서 Silicon contained Coralline Hydroxyapatite와 Beta Tricalcium Phosphate 합성제재의 효과에 대한 임상적 고찰 (Effect of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate in human intrabony defects)

  • 장용주;김용태;박정철;김창성;최성호;김종관
    • 대한치과의사협회지
    • /
    • 제47권9호
    • /
    • pp.596-606
    • /
    • 2009
  • Aim : The ultimate goal of periodontal treatment is regeneration of periodontium that have been lost due to inflammatory periodontal disease. Recently, Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate bone substitute have been introduced to achieve periodontal regeneration. The purpose of this study is to evaluate the effect of the Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate(BoneMedik-$DM^{(R)}$, Meta Biomed Co., Ltd. Oksan, Korea) on periodontal intrabony defects. Methods and materials : Clinical effects of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate implantation in intrabony defects were evaluated 6 months after surgery in Sixty-one intrabony defects from Fourty-six patients with chronic periodontitis. Twenty-nine experimental defects in twenty-five patients received the Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate(test group), while Thirty-Three defects in twenty-one patients were treated with flap procedure only( control group). Comparative observation were done for preoperative and postoperative differences between control and experimental clinical parameters,-clinical attachment 10ss(CAL), probing depth(PD), bone probing depth(BPD), gingi val recession. Results : Postoperative improvements in CAL, PD, BPD were observed in both test and control groups(P<0.0l). However, the improvements in CAL, PD, BPD of the test group were significantly greater than control group. Conclusion : Healing of the both groups were uneventful during experimental periods. Use of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate in a flap operation resulted in significantly greater improvements in CAL, PD, and BPD over flap operation alone. Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate will be good bone substitute materials for treatment of intrabony defects.

  • PDF

Hydroxyapatite Bioceramics의 합성 및 물성에 관한 연구 (A Study on the Preparation and Properties of Hydroxyapatite Bioceramics)

  • 이석곤;고형열;이구종;최상흘
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.171-178
    • /
    • 1989
  • In order to develope hydroxyapatite ceramics which has mechanical strength as bio-implant materials and get the basic data for the study and application of biocompatibility, hydroxyapatite was synthesized at Ca/P=1.67~1.75, pH 7~11 by precipitation method. Using prepared powders, the sintered body, fluorine substituted body and the porous body was formed and their properties were investigated. The sample obtained in condition of Ca/P=1.67, pH 7 and sintering at 1,15$0^{\circ}C$ was decomposed to $\beta$-tricalcium phosphate, and co-existed with hydroxyapatite. Hydroxyapatite synthesized at pH 11 was not easily decomposed to $\beta$-tricalcium phosphate at sintering process. The substitution of a small amount of fluorine for hydroxyapatite prevented hydroxyapatite from being decompsed to $\beta$-tricalcium phosphate. Hydroxyapatite ceramics which substited of 10% fluorine was prepared at 1,15$0^{\circ}C$, and the valueof bending strength for this body were found to be 112MPa.

  • PDF

Ca(OH)$_2$ 현탁액과 각종 인산 수용액으로부터 인산칼슘 초미분말의 제조 (Synthesis of Ultra-fine Calcium Phosphate Powders from Ca(OH)2 Suspension and Various Phosphoric Aqueous Solutions)

  • 민경소;최상흘
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.74-82
    • /
    • 1992
  • Ultra-fine calcium phosphate powders were synthesized by the reaction of Ca(OH)2 suspension with various phosphoric aqueous solutions such as (NH4)2HPO4, H4P2O7 and H3PO4, and the characterization of powders was examined for each synthetic condition. When (NH4)2HPO4 and H3PO4 were used, hydroxyapatite powders with poor crystallinity were obtained. In the case of H4P2O7, amorphous calcium phosphate was obtained up to 0.3 mol/ι Ca(OH)2 suspension, but above the concentration, poor crystalline hydroxyapatite was produced. Crystalline phases of powders heat-treated at 80$0^{\circ}C$ were hydroxyapatite, $\beta$-tricalcium phosphate and $\beta$-tricalcium phosphate for the case of (NH4)2HPO4, H4P2O7 and H3PO4, respectively. SEM observation revealed that the shapes of synthesized powders were vigorously agglomerated spherical with the size below 100 nm, but TEM observation revealed that primary shapes of particles were rod for (NH4)2HPO4 and H3PO4 and were sphere for H4P2O7. There was no dependence of the concentration of Ca(OH)2 suspension. In the case that reaction temperature and pH of the suspension were raised, the inclination to the hydroxyapatite were remarkable. The amorphous calcium phosphate synthesized in this experiment contained water about 20% , and was crystallized to $\beta$-tricalcium phosphate at 69$0^{\circ}C$.

  • PDF

Microsotructure Designed Porous Apatite Ceramics Prepared by Hydrothermal Method

  • Ioku, Koji;Fukuhara, Michiko;Fujimori, Hirotaka;Goto, Seishi
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.162-164
    • /
    • 1999
  • Microsotructure designed porous ceramics of calcium hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2)$ were prepared by hydrothermal method. The particle size, shape, and the micro-pore size of the porous hydroxyapatite ceramics could becontrolled. The hydroxyapatite was non-stoichiometric apatite with calcium deficient compositions (Ca/P ratio < 1.67). The composition of non-stoichiometric hydroxyapatite ceramics could be controlled from 1.50 to 1.63 in Ca/P ratio. The hydroxyapatite ceramics preparedc at $105^{\circ}C$ under the saturated vapor pressure for 20h were composed of rod-shaped crystals with about 10$\mu\textrm{m}$ in length with the mean aspect ratio of 40. The porous ceramics of calcium deficient hydroxyapatite had about 45% porosity with the inter-connecting pore structure. Porous hydroxyapatite ceramics prepared hydrothermally had the compressive strength of about 10 to 30 MPa. In addition, porous ceramics of $\beta$-tricalcium phosphate ($\beta-Ca_3(PO_4)_2$) were prepared from the calcium deficient hydroxyapatite.

  • PDF

균일침전법을 이용항 Hydroxyapatite 분말의 제조 및 가열변화 (Synthesis of Hydroxyapatite Powders by Homogeneous Precipitation Method and Their Thermal Changes)

  • 이진호;박훈;김창은
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.7-16
    • /
    • 1996
  • ${CO_3}^{2-}$ containing whisker-like hydroxyapatite powders were synthesized byhomogeneous precipitation method using urea, Dicalcium phosphate anhdrate[DCPA; $CaHPO_4$] and octacalcium phosphate [OCP; $Ca_8H_2(PO_4_)6\cdot5H_20$]were obtained as precursors and they transformed to high crystalline hydroxyapatites at pH 5.62, and 6.54 respectively. According to the condition of the final pH in the solutions for the solution products and urea contents OCP was remained. When the solution product of $Ca^{2-}$ and ${PO_4}^{3-}$ was $1.5\times 10^4$[$mM^2$] and the content of urea was 0.25 mol.$dm^{-3}$ well crystallized whisker-like hydroxyapatite tens of micrometer in length was obtained. By heat treatment DCPA and OCP were decomposed into $\beta$-tricalcium phosphate [$\beta$-TCP ; $\beta$-$Ca_3{PO_4}_2$] and $\beta$-dicalcium phosphate [$\beta$-DCP ;$\beta$-$Ca_2P_2O_4}_2$]. And well-crystallized hydroxyapatite was partially decomposed into $\beta$-TCP at $800^{\circ}C$.

  • PDF

Setting Behavior and Drug Release from Brushite Bone Cement prepared with Granulated Hydroxyapatite and β-Tricalcium Phosphate

  • Son, Yeong-Jun;Lee, In-Cheol;Jo, Hyun-Ho;Chung, Tai-Joo;Oh, Kyung-Sik
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.56-64
    • /
    • 2019
  • Calcium phosphate bone cement was prepared to contain antibiotics for release after setting using granulated ${\beta}$-tricalcium phosphate (${\beta}$-TCP) and hydroxyapatite (HA). Gentamicin sulfate (GS) solution was infiltrated within the interconnected pores of the granule to avoid affecting the setting reaction and for protection of GS during the setting. Consequently, the setting time and the temperature increase were not affected, regardless of the loading of GS. The release of the GS from the cement was estimated by measuring the concentration at regular intervals from the cement dipped solution. The ${\beta}$-TCP granule loaded with GS exhibited the saturation of accumulative concentration at 16 h. In contrast, the HA granule with GS exhibited steady increase in accumulative concentration of over $10{\mu}g/ml$ at 144 h. Thus, the granulated cement could release the GS greater than the minimum inhibitory concentration of staphylococcus during the prescription peroid of the oral antibiotics.

참치 뼈에서 추출한 천연 Hydroxyapatite를 이용한 세라믹 복합체 및 Glass-Ceramics의 특성 (Properties of the Ceramic Composites and Glass-Ceramics Prepared by Using the Natural Hydroxyapatite Derived from Tuna bone)

  • 최진삼;이창국;전유진;변희국;김세권
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.394-399
    • /
    • 1999
  • 바이오 세라믹스와 같은 의료용재료의 출발물질에 사용되는 화학시약을 대신하여 참치 뼈로부터 추출한 천연 hydroxyapatite를 이용하여 세라믹 복합체와 glass-ceramics 등을 제조하였다. 복합체의 경우 pseudowollastonite(${\alpha}-CaSiO_3$)와 $\beta$-tricalcium phosphate($\beta$-TCP)가 주 결정상으로, 그리고 glass-ceramics는 pseudowollastonite, $\beta$-TCP 및 핵형성제로 포함시킨 $CaF_2$에 의한 fluoroapatite상이 각각 관찰되었다. 복합체의 미세구조 변화 양상은 열처리 온도의 함수로 결정상의 입자 크기가 증가하는 일반적인 미세조직 구조의 형태를 나타내었고, 맛) $900^{\circ}C$로 4시간 동안 대기 상에서 제조한 glass-ceramics의 강도는 90 MPa로 나타났다.

  • PDF

$\alpha$-Tricalcium Phosphate의 Tris. Solution에서의 수화특성 (Hydration Properties of $\alpha$-Tricalcium Phosphate in Tris. Solution)

  • 인경필;최상흘
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.905-910
    • /
    • 1993
  • $\alpha$-tricalcium phosphate($\alpha$-TCP) powders were synthesized and their hydration properties were investigated in Tris. solution. Two kinds of $\alpha$-TCP powder samples were prepared; the one is reaction product of CaHPO4.2H2O and CaCO3, and another is that of hydroxyapatite(HAp) and $\beta$-Ca2P2O7. They were satisfied with Ca/P mole ratio 1.5 and were heated at 150$0^{\circ}C$ for 5 hours. In the hydration of $\alpha$-TCP samples the powder which was synthesized from HAp and $\beta$-Ca2P2O7 was hydrated faster than that from CaHPO4.2H2O and CaCO3. The hydration reaction of $\alpha$-TCP powder transformed rapidly into HAp accompanying setting and hardening. It was realized that the hydration reaction of $\alpha$-TCP was due to the solution-precipitation mechanism and the hydrates from the reaction were Ca-deficient HAp having funtional group HPO42-.

  • PDF

30 wt% β-Tricalcium Phosphate/Al2O3 복합재료의 제조 및 특성 (Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites)

  • 정희철;하정수
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.142-147
    • /
    • 2018
  • ${\beta}-Tricalcium$ phosphate (TCP) was added to $Al_2O_3$ to make a biomaterial with good mechanical properties. Using a TCP powder synthesized by a polymer complexation method, $Al_2O_3$ composites containing 30 wt% TCP were fabricated and characterized for densification, phase, microstructure, strength, and fracture toughness. With optimizing the powder preparation conditions, a high densification of 97 % was obtained by sintering at $1350^{\circ}C$ for 2 h. No reaction between the two components occurred and there was no transition to ${\alpha}-TCP$. TCP grains with a size of $2-4{\mu}m$ were well surrounded by $Al_2O_3$ grains with a size of $1{\mu}m$ or less. Strength 61(Brazilian) or 187(3-p MOR) MPa, and fracture toughness 1.7 (notched beam) or 2.5 (indentation) $MPa{\cdot}m^{1/2}$ were obtained, which are large improvements over the strength of $TCP/Al_2O_3$ composites and toughness of TCP and hydroxyapatite in previous studies.

In Vitro Reaction for Calcium Phosphate Ceramics

  • Ioku, Koji;Toya, Hiroyuki;Fujimori, Hirotaka;Goto, Seishi
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.214-218
    • /
    • 2000
  • Hydroxyapatite (HA) and $\beta$-tricalcium phosphate ($\beta$-TCP) are bio-compatible materials with bones and teeth. HA has been widely applied as bone substitutes because of chemical stability in vivo, while $\beta$-TCP has higher resorbability than HA when the material is implanted in a bone defect. In the present study, both HA and $\beta$-TCP porous ceramics were soaked in the simulated body fluid in order to investigate the reaction between the materials and the fluid. After the soaking test, carbonate hydroxyapatite was formed on HA surface at 1 week, and then the amount of precipitates increased with increasing period of the soaking test. While $\beta$-TCP was not dissolved in the fluid, carbonate hydroxyaopatite was also formed on $\beta$-TCP surface after 12 weeks, and the amount of precipitates was less than that on HA. In vitro behavior of HA was similar to that in vivo, but in vitro behavior of $\beta$-TCP was not similar to that in vivo.

  • PDF