• Title/Summary/Keyword: Hydroxide ion

Search Result 277, Processing Time 0.032 seconds

The Kinetics and Mechanism of the Hydrolysis of a 1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene (1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Tae Seong Huh
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.430-436
    • /
    • 1974
  • The rate constants of hydrolysis of 1,1-dicyano-2-p-dimethylaminophenyl-2-chloroethylene(DPC) were determined at various pH and the rate equation which can be applied over wide pH range is obtained. From the rate equation the mechanism of the hydrolysis of a DPC over wide pH range is fully explained; below pH 3 and above pH 7.5, the rate constant is proportional to the concentration of hydronium ion and hydroxide ion, respectively. However, in the range of pH 3 to 7.5, water, hydronium ion and hydroxide ion catalyze the hydrolysis of DPC.

  • PDF

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane (음이온 교환막의 정확한 OH-전도도 및 CO2 피독 효과 분석을 위한 전기화학적 측정법)

  • Kim, Suyeon;Kwon, Hugeun;Lee, Hyejin;Jung, Namgee;Bae, Byungchan;Shin, Dongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2022
  • The anion exchange membrane used in alkaline membrane fuel cells transports hydroxide ions, and ion conductivity affects fuel cell performance. Thus, the measurement of absolute hydroxide ion conductivity is essential. However, it is challenging to accurately measure hydroxide ion conductivity since hydroxide ions are easily poisoned in the form of bicarbonate by carbon dioxide in the atmosphere. In this study, we applied electrochemical ion exchange treatment to measure the absolute hydroxide ion conductivity of the anion exchange membrane. In addition, we investigated the effect of carbon dioxide poisoning of hydroxide ions on electrochemical performance by measuring bicarbonate conductivity. Commercial anion exchange membranes (FAA-3-50 and Orion TM1) and polyphenylene-based block copolymer (QPP-6F) were used.

The Ion-Exchange Properties of Synthetic Zeolite A from Domestic Kaolin (국산 고령토로 합성한 제올라이트 A의 이온교환성)

  • 김영대;김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 1981
  • Synthetic zeolite A was prerared from domestic Hadong kaolin with sodium hydroxide solution and their ion exchange isotherms of $K^+$, $NH^{4+}$, $Li^+$ and $Ag^+$ ion were presented. The optimum reaction conditions for synthetic zeolite A from calcinated kaolin were 2 fold excess of 2N sodium hydroxide solution, 10$0^{\circ}C$ and 8 hours. It was observed that before the crystallization of zeolite A the samples reacted with sodium hydroxide solution had rather higher ion exchange capacities than zeolite A. The $K^+$-$Na^+$ and $Ag^+$$Na^+$ ion exchange isotherms were signoidal. The initial selectivity series was in the order $Ag^+$$K^+$>$Na^+$>$NH_4$>$Li^+$. Between approximately 33 and 67% replacement of soium ions the selectivity series became $Na^>$ and above 67% became $Ag^+$>$K^+$. Evidence were also presented to demonstrate that 8 out of 12 sodium ions per pseudo unit cell were not easily replaceable by lithium ions and 4 out of 12 not easily replaceable by ammonium ions.

  • PDF

A Literature Study on the Development of Cementitious Materials using a Layered Double Hydroxide (층상이중수산화물(Layered Double Hydroxides)을 활용한 시멘트계 재료 개발에 관한 문헌조사 연구)

  • Lee, Seung-Yeop;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.107-108
    • /
    • 2015
  • Layered Double Hydroxides is known as a hydrotalcite-like material. It is a type of anionic clay with planar structure. It is composed of layer structure which is able to exchange anion between two layers which includes divalent ion and trivalent ion. Therefore, layered double hydroxide is applicable for eliminating harmful heavy metals and anionic substances which exist in the concrete. Because it is also able to be used as catalyst and has high possibility of utilization, It is getting an large amount of attention recently. In this study, an analysis on the structure of the layerd double hydroxide (LDH) which is possible to bind the anion was carried out.

  • PDF

Behavior of Hydroxide Ions at the Water-Ice Surface by Low Energy Sputtering Method

  • Kim, S.Y.;Park, E.H.;Kang, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.338-338
    • /
    • 2011
  • The behavior of hydroxide ions on water-ice films was studied by using $Cs^+$ reactive ion scattering (RIS), low energy sputtering (LES) and temperature-programmed desorption (TPD). A $Cs^+$ beam of a low kinetic energy (<100 eV) from $Cs^+$ ion gun was scattered at the film surface, and then $Cs^+$ projectiles pick up the neutral molecules on the surface as $Cs^+$-molecule clusters form (RIS process). In LES process, the preexisting ions on the surface are desorbed by the $Cs^+$ beam impact. The water-ice films made of a thick (>50 BL) $H_2$O layer and a thin $D_2O$ overlayer were controlled in temperatures 90~140K. We prepared hydroxide ions by using Na atoms which proceeded hydrolysis reaction either on the ice film surface or at the interface of the $H_2O$ and $D_2O$ layers.[1] The migration of hydroxide ions from the $H_2O/D_2O$ interface to the top of the film was examined as afunction of time. From this experiment, we show that hydroxide ions tend to reside at the water-ice surface. We also investigated the H/D exchange reactions of $H_2O$ and $D_2O$ molecules mediated by hydroxide ions to reveal the mechanism of migration of hydroxide to the ice surface.

  • PDF

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylacrylic Acid (${\alpha}$-Cyano-${\beta}$-Piperonylacrylic Acid의 가수분해 메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Kwang Il Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.269-274
    • /
    • 1973
  • The rate constants of the hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylacrylic acid were determined by Ultraviolet spectrophotometry at various pH and a rate equation which can be applied over wide pH range was obtained. The reaction mechanism of hydrolysis of ${\alpha}$-Cyano-${\beta}$-piperonylic acid and especially the catalytic contribution of hydroxide ion which not studied carefully before in acidic media, can be fully explained by the rate equation obtained. The rate equation reveals that; below pH 4.0, the reaction is initiated by the addition of water molecule to ${\alpha}$-Cyano-${\beta}$-piperonyl acrylic acid. At pH $5.0{\sim}7.5$, ${\alpha}$-Cyano-${\beta}$-piperonylacrylic acid compete with ${\alpha}$-Cyano-${\beta}$-piperonyl acrylate ion in adding of water. At pH 8.0, water is the only nucleophile for ${\alpha}$-Cyano-${\beta}$-piperonylacrylate ion, however, above pH 12.0, hydroxide ion is an addendum and the accepter is ${\alpha}$-Cyano-${\beta}$-piperonylacrylate ion.

  • PDF

Elution of calcium ion from calcium hydroxide products using various root canal irrigants (수종의 관주용액의 수산화칼슘제재에 대한 칼슘 용출효과)

  • Seo, Jung-Hwa;Park, Dong-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.379-390
    • /
    • 1998
  • In endodontic treatment, calcium hydroxide has been used as intracanal medicament. Although calcium hydroxide should be removed thoroughly before permanent root canal filling, no effective method for its removal has been reported. Because of irregularity of root canal walls, root curvatures and anatomic variations, it is insufficient to remove calcium hydroxide from the canal wall only by mechanical instrumentation Considering the chemical effects of irrigants on calcium hydroxide, $Ca^{++}$ dissolving effect from two calcium hydroxide products is investigated, using dis- tilled water, NaOCl, citric acid and EDTA. Vitapex$^{(R)}$ 0.1g and calcium hydroxide 0.03g were dissolved in distilled water, 5% NaOCl, 50% citric acid and 17% EDTA respectively, at 1, 3, 5, 10min. time interval. The solution was filtered using filter paper(pore size $5{\mu}m$) and $Ca^{++}$ concentration was determined by ion chromatography. The result were as follows : 1. Distilled water, NaOCl, citric acid and EDTA abstracted more $Ca^{++}$ from calcium hydroxide than Vitapex$^{(R)}$ except NaOCl 1, 5, 10 time interval. 2. EDTA and citric acid abstracted more $Ca^{++}$ from Vitapex$^{(R)}$ and calcium hydroxide than distilled water or NaOCl. The overall result support the view that water-based calcium hydroxide product is easily removed than oil-based calcium hydroxide product and EDTA, citric acid are more effective in $Ca^{++}$ elution than NaOCl or distilled water.

  • PDF

Phosphorus Adsorption by Layered Double Hydroxide (층상이중수산화물을 이용한 인 흡착)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2005
  • A series of batch type adsorption experiments were performed to remove aquatic phosphorus, where the layered double hydroxide (HTAL-CI) was used as an powdered adsorbent. It showed high adsorption capacity (T-P removal: 99.9%) in the range of pH 5.5 to 8.8 in spite of providing low adsorption characteristics (pH<4). The adsorption isotherm was approximated as a modified Langmuir type equation, where the maximum adsorption amount (50.5mg-P/g) was obtained at around 80mg-P/L of phosphorus concentration. A phosphate ion can occupy three adsorption sites with a chloride ion considering the result that 1 mol of phosphate ion adsorbed corresponded to the 3 moles of chloride ion released. Although the chloride ion at less than 1,000mg-CI/L did not significantly affect the adsorption capacity of phosphate, carbonate ion inhibited the adsorption property.

Kinetics and Mechanism of the Hydrolysis of N-Arylsulfonylbenzimidothiophenyl ester (N-Arylsulfonylbenzimidothiophenyl Ester 유도체의 가수분해에 대한 반응속도론적 연구)

  • Tae-Seong Huh;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.73-86
    • /
    • 1976
  • Four unreported derivatives of N-arylsulfonylbenzamide and six derivatives of N-arylsulfonylbenzimidothiophenyl ester were prepared. These were; p-methyl-N-(arylsulfonyl)benzamide, m-methyl-N-(arylsulfonyl)benzamide, m-nitro-N-(arylsulfonyl)benzamide, p-methoxy-N-(arylsulfonyl)benzamide, p-methyl-N-(arylsulfonyl)benzimidothiophenyl esters, p-chloro-N-(arylsulfonyl)benzimidothiophenyl ester, m-methyl-N-(arylsulfonyl)benzimidothiophenyl ester, p-nitro-N-(arylsulfonyl)benzimidothiophenyl ester, m-nitro-(arylsulfonyl)benzimidothiophenyl ester and p-methoxy-N-(arylsulfonyl)benzimidothiophenyl ester. The rate constants of the hydrolysis of N-arylsulfonylbenzimidothiophenyl esters were determined by ultraviolet spectrophotometry at various pH and rate equations which can be applied over a wide pH range were obtained. From the rate equation and substituent effects, one can conclude that above pH 11, the hydrolysis of N-arylsulfonylbenzimidothiophenyl esters are initiated by the attack of hydroxide ion, however, below pH 9, started by the addition of a water molecule on the azomethine group. At pH 9∼11, the competitive reaction between a water molecule and hydroxide ion is anticipated to occur.

  • PDF