• Title/Summary/Keyword: Hydrotreating Catalysis

Search Result 2, Processing Time 0.015 seconds

The Chemical Aspects on Hydrotreating Catalysis for Residue (잔사유의 수소화처리 촉매공정에 대한 화학적 고찰)

  • Jeon, Min-Seok;Lee, Youngjin;Jung, Hoi-Kyoeng;Kim, Hyung-Jong;Yoon, Seong-Ho;Kim, Taegon;Park, Joo-Il
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.455-460
    • /
    • 2019
  • Hydrotreating catalysis refers to a various hydrogenation which saturate an unsaturated hydrocarbon, together with removing heteroatoms such as sulfur, nitrogen, oxygen, and trace metals from different petroleum streams in a refinery. Most refineries include at least three hydrotreating units for upgrading naphtha, middle distillates, gas oils, intermediate process streams, and/or residue. Among them, hydrotreating catalysis for residue are the core of the process, because of its complexity. This article reviews recent progress in tackling the issues found in the upgrading residues by hydrotreating, focusing on the chemistry of hydrodemetallization (HDM) and hydrodesulfurization (HDS). We also discuss the composition and functions of hydrotreating catalysts, and we highlight areas for further improvement.

Advances of Isomerizing-hydrogenating Properties of CoMo Catalysts Supported on ASA-Al2O3

  • Avdeenko, E.A.;Nadeina, K.A.;Larina, T.V.;Pakharukova, V.P.;Gerasimov, E.Yu.;Prosvirin, I.P.;Gabrienko, A.A.;Vatutina, Yu.V.;Klimov, O.V.;Noskov, A.S.
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.5
    • /
    • pp.349-361
    • /
    • 2022
  • Because hydrotreating (HDT) of FCC gasoline is one of the important processes used to prepare such gasoline for blending, the development of a catalyst for this process is of great interest. Currently, the industrial HDT of FCC gasoline consists of two stages and the creation of a new catalyst for one-stage HDT will make this process more efficient. Recently, our group has developed the CoMo/Al2O3-ASA catalyst and studied the influence of Si/Al ratio on the target reactions of HDT process. Despite the high selectivity and activity, the catalyst with ASA is not applicable in industry because of its low strength. The present work moves forward to study the influence of the ASA content in the catalyst support and clarify the possibility to develop the catalyst that combines high activity and selectivity in HDT reactions with successful performance. Here we show that the CoMo catalyst with ASA/Al2O3 molar ratio 1/1 in the support is the best combination for FCC gasoline hydrotreatment due to exceptional properties of the catalyst composition.