• Title/Summary/Keyword: Hydrothermal pressure

Search Result 171, Processing Time 0.028 seconds

On the Possibility of Bulk Large Diamond Single Crystal Synthesis with Hydrothermal Process

  • Andrzej M. Szymanski
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.18-32
    • /
    • 1997
  • Analysis of geological data, relating to occurrence and formation of diamonds as well as host rocks, inclined author to have different outlook on the diamond genesis and to establish a proposition on their formation at pneumatolytic-hydrothermal conditions near superficial Earth zones. Based on that theoretical foundations and experimental works, the first low-pressure and low-temperature hydrothermal diamond synthesis from water solution in pressure autoclave was executed. As a result, the natural diamond seed crystal grew bigger ad coupling of the synthetic diamond single-crystalline grains were obtained. SEM documentation proofs that parallely paragenetic crystallization of quartz and diamond, and nucleation of new octahedral diamond crystals brush take place on the seed crystal surface. Forecast of none times growth of diamond industrial application at 2000 and seventeen times at 2010 with reference to 1995, needs technology of large and pure single-crystals diamond synthesis. Growth of the stable and destressed diamond single-crystals in the pseudo-metastable diamond plot, may be realized with processes going through the long time and with participation of free radicals catalysts admixtures only. Sol-gel colloidal processes are an example of environment which form stable crystals in thermodynamically unstable conditions through a long time. Paper critically discusses a whole way of studies on the diamond synthesis, from high-pressure and high-temperature processes through chemical vapour deposition up to hydrothermal experiments.

  • PDF

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee;Chang-Hyun Kim;Young-Man Yoon
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.818-828
    • /
    • 2023
  • Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

Structural Controls on Crustal Fluid Redistribution and Hydrothermal Gold Deposits: A Review on the Suction Pump and Fault Valve Models (지각 내 열수 재분배와 금광상 형성의 구조적 제어: 석션 펌프 및 단층 밸브 모델에 대한 리뷰)

  • Kwak, Yujung;Park, Seung-Ik;Park, Changyun
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.183-195
    • /
    • 2022
  • Hydrothermal gold deposits are evidence of intensive fluid flow through fault zones, and the resultant vein structures and textures reflect the fluid redistribution mechanism. This review introduces the suction pump and fault valve models as fluid circulation mechanisms causing hydrothermal gold deposits in the frameworks of the concepts of fault mechanics. The suction pump and fault valve models describe faulting-driven heterogeneous fluid flow and related vein formation mechanisms, accompanied by the cycles of (1) stress accumulation and fluid pressure build-up and (2) seismic rupture and stress/fluid pressure release. The models are available under different geological environments (stress conditions), and the vein structures and textures representing the mechanisms have similarities and differences. The suction pump and fault valve models must help better to interpret the origins of hydrothermal gold deposits in Korea and improve the efficiency of further exploration.

Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine (유문암-열수 반응과 유광 견운모 광상의 성인)

  • Park, Maeng-Eon;Choi, In-Sik;Kim, Jin-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

A Study of Flow Characteristics in Pressure Independent Control Valve for Hydronic System (냉난방수배관시스템용 차압독립형 유량제어밸브의 유동특성 연구)

  • Min, Joon-Ki;Won, Bo-Young;Jeong, Shin-Kyu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.3
    • /
    • pp.9-15
    • /
    • 2017
  • In this study, set values of PICV(Pressure Independent Control Valve) were simulated according to the pressure distribution and velocity. The higher the set value and the open rate, as the lower the pressure in the neck. On the contrary, the lower the set value and open rate, as the higher the pressure in the neck. When the set value was small, the pressure was distributed sufficiently and confirmed that the pressure was generated by the VOF, confirming that it could generate a vapor pressure. When the set value 100 %, the lower corn open rate of the differential pressure was 46 % to 29 %, set value 100 % was 29 % to 19 %, and set value 6 % was 12 % to 6 % for the lower corn open rate percentile, it was limited to within 50 %. Thus, the results of this study on the correlation between open rate and differential pressure of the set value of the PICV will be beneficial to improve performance of flow control valves and contribute to their efficient operation used for a hydronic system.

A Study on the Hydrothermal Synthesis of Clay Mineral (II) -Hydrothermal Synthesis of Clay Mineral from Anorthite in San.Chung District of Korea- (수열반응에 의한 인공점토의 합성연구 (II) -경남 산청산 회장석으로부터 인공점토의 수열합성에 관한 연구-)

  • 이응상;이상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.735-747
    • /
    • 1995
  • The synthesis of clay mineral through the hydrothermal reaction of the anorthite, which is distributed in San Chung-District of Korea and called as the ground rock for halloysite-kaolin, has been investigated. It was observed that this anorthite sample was easily converted into clay mineral with 0.5 wt% HCl solution at a temperature below 20$0^{\circ}C$ under a pressure about 15 atm. The conversion reaction was promoted by adding aluminum chloride under the condition concerned. Aluminum chloride was considered to supply the insufficient aluminum ion during the conversion reaction and to reprepare the acid solution-condition by adding the HCl-component as a by-product. According to the electron micrographs, it was confirmed that fine tubular or needle-shaped halloysite-kaolin minerals with the crystal length shorter than about 1.1${\mu}{\textrm}{m}$ could be obtained by the hydrothermal reaction for 5 days under those conditions.

  • PDF

열수변질 점토맥과 산사태

  • Jo, Hwan-Ju;Jeong, Gyeong-Mun;Jo, Ho-Yeong
    • Mineral and Industry
    • /
    • v.29
    • /
    • pp.56-66
    • /
    • 2016
  • In Korea, where hydrothermal alteration zones are widely distributed, clay veins formed by hydrothermal alteration processes on natural slopes or artificial slopes can play an important role in the slope stability. When the surface water infiltrates the ground where the clay vein exists, the pore water pressure in the ground can be locally increased due to impermeable properties of clay minerals. Infiltration of the surface water induces the increase in the pore water pressure, which can cause erosion of the fine clay particles. The eroded clay particles flow and deposit in an area where the flow velocity is slowed down. Where clay minerals are deposited, ground water can leak due to an increase in local pore pressures, which can cause slope failure. In this paper, studies related to hydrothermal clay vein and landslide are introduced.

  • PDF

Hydrothermal Pressure Effect over Preparation of MoS2: Catalyst Characterization and Direct Methanation (수열 압력 제조 조건이 MoS2 촉매 특성과 직접 메탄화 반응에 미치는 영향)

  • PARK, JEONGHWAN;KIM, SEONGSOO;KIM, JINGUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • After $MoS_2$ catalyst was prepared at 1, 30, and 70 atm, the hydrothermal pressure effect over preparation of $MoS_2$ was investigated in terms of catalyst characterization and direct methanation. Multifaceted characterization techniques such as XRD, BET, SEM, TPR, EDS, and XPS were used to analyze and investigate the effect of high pressure over the preparation of surface and bulk $MoS_2$ catalyst. Result from XRD, SEM, and BET demonstrated that $MoS_2$ was more dispersed as preparation pressure was increased, which resulted finer $MoS_2$ crystal size and higher surface area. EDS result confirmed that bulk composition was $MoS_2$ and XPS result showed that S/Mo mole ratio of surface was about 1.3. TPR showed that $MoS_2$ prepared at 30 atm possessed higher active surface sites than $MoS_2$ prepared at 1 atm and these sites could contribute to higher CO yield during methanation. Direct methanation was used to evaluate the CO conversion of the both catalysts prepared at 1 atm and 30 atm and reaction condition was at feed mole ratio of $H_2/CO=1$, GHSV=4800, 30 atm, temperature($^{\circ}C$) of 300, 350, 400, and 450. $MoS_2$ prepared at 30 atm showed more stable and higher CO conversion than $MoS_2$ prepared at 1 atm. Faster deactivation was occurred over $MoS_2$ prepared at 1 atm, which indicated that preparation pressure of $MoS_2$ catalyst was the dominant factor to improve the yield of direct methanation.

Effect of Design Factors in a Pump Station on Pressure Variations by Water Hammering (가압 펌프장에서 설계인자들이 수격에 의한 압력변동에 미치는 영향)

  • Park, Jong-Hoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.15-27
    • /
    • 2021
  • In this study, the effect of design factors in a pump station on the pressure variations which are the main cause of water hammering has been investigated by numerical simulations. As design factors, the flow rate, Young's modulus, diameter, thickness, roughness coefficient of pipeline are considered. The relationships between the pressure variations and the design factors are analyzed. The results show that the pressure variation increases sensitively with the flow rate and Young's modulus, and increases gradually with the thickness and roughness coefficient of pipe, whereas it decreases with the pipe diameter. The wavelength of the pressure wave becomes longer for a smaller Young's modulus, a smaller pipe thickness and a bigger pipe diameter. These relationships are nondimensionalized, and logarithmic curve-fitted functions are proposed by regression analysis. Most effective factors on the nondimensional pressure variation is Young's modulus. Flow rate, roughness coefficient, relative thickness and pipe diameters are the next impact factors.

A Study on Energy Shutters to Reduce Infiltration Load of Buildings (건물의 침기부하 절감을 위한 에너지셔터에 관한 연구)

  • Gwang Soo Ko;Youn Cheol Park
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • In this study, in order to reduce the amount of infiltration generated from windows among the heat loss generated in the building, energy shutters were installed on the windows to conduct experiments on the change in internal temperature and amount of infiltration due to the pressure difference between the environmental chamber and the pressure box. As a result of the experiment, when the pressure difference was 0Pa, the initial temperature of the pressure box of window was higher than that of the pressure box of the energy shutter, but when the pressure difference occurred, the internal temperature of the pressure box of the energy shutter was higher. In addition, the amount of infiltration of the energy shutter was lower than that of the windows in all experimental conditions, and it was concluded that the reduction rate of the infiltration load (of the energy shutters) could be reduced by 53.3% compared to that of the windows.