• Title/Summary/Keyword: Hydrostatic Stress

Search Result 138, Processing Time 0.026 seconds

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Minimum-weight design of stiffened shell under hydrostatic pressure by genetic algorithm

  • Ghasemi, A.R.;Hajmohammad, M.H.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.75-92
    • /
    • 2015
  • In this paper, optimization of cylindrical shells under external pressure to minimize its weight has been studied. Buckling equations are based on standard of ABS underwater vehicles. Dimension and type of circumferential stiffeners, and its distance from each other are assumed as variables of optimization problem. Considering the extent of these variables, genetic algorithms have been used for optimization. To study the effect of hydrostatic pressure on the shell and its fabrication according to the existing standards, geometrical and construction as well as stress and buckling constraints have been used in optimization algorithm and also penalty functions are applied to eliminate weak model. Finally, the best model which has the minimum weight considering the applied pressure has been presented.

Hydrostatic Extrusion of Copper-Clad Aluminum Rod (구리 피복 알루미늄 봉의 정수압 압출에 의한 성형)

  • 박훈재;나경환;조남선;이용신
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • The present study is concerned with the hydrostatic extrusion process for the copper-clad aluminum rod through metallurgical joining. The rigid viscoplastic finite element analyses are performed for the steady state extrusion process of the bimetal rod. An algorithm for finding the interface profile of the bimetal rod by tracking a particle path in Eulerian domain is presented. The distributions of the effective strain rate, equivalent stress and hardness are examined for the several extrusion ratios. Experiments are also carried out for the copper-clad aluminum rod at room temperature. It is found out that the finite element predictions are generally in good agreement with the experimental observations. The detail comparisons of the extrusion loads predicted by the element method with those by experiments are given.

  • PDF

A Method on Safety Assessment of Shell-type Roller Gate (쉘타입 로울러게이트의 안전성평가 방법)

  • Chung, Jee-Seung;Jung, Hae-Wook;Lim, Hyung-Taek
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.92-98
    • /
    • 2015
  • This paper was carried out to prove the relation between static loads acting on the sluice(hydrostatic) and dynamic loads (additional loads) arising from opening or closing of sluice, through measuring the operation of shell-type roller gate by using the method of measuring of the completely opening water gate, as measured from one excitation state, it was confirmed to be capable of measuring the natural frequency reliable measurement results. Throughout the test, we prove that it's a reasonable way to estimate the default margin of safety when calculated by dividing the sum of the hydrostatic stress to the maximum stress and additional stress. The application of this paper's safety estimation method can be utilized as the basic data for the systematic and rational maintenance management of dams and submerged weirs in the future, and it is expected that this study can bring forth.

3-D Concrete Model Using Non-associated Flow Rule in Dilatant-Softening Region of Multi-axial Stress State (3차원 솔리드요소 및 비상관 소성흐름 법칙을 이용한 콘크리트의 응력해석)

  • Seong, Dae Jeong;Choi, Jung Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Cohesive and frictional materials such as concrete and soil are pressure dependent. In general, failure criterion for such materials inclined with respect to positive hydrostatic axis in Haigh-Westergaard stress space. Consequently, inelastic volumetric strain always positive with associated flow rule. In this study, to overcome this shortcoming, non-associated flow rule which controls volumetric component of plastic flow is adopted. Numerical analysis based on a constitutive model using nonuniform hardening plasticity with five parameter failure criterion and non-associated flow rule has conducted to predict concrete behavior under multi-axial stress state and verified with experimental result.

Numerical Study on the Design Safety of $9\%$ Nickel Based Inner Tank Bottom Plate in Terms of Hydrostatic Pressure (유체정압을 고려한 $9\%$ 니켈강재 내부탱크 바닥판의 설계 안정성에 관한 수치적 연구)

  • Kim Chung Kyun;Kim Han Goo
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.35-41
    • /
    • 2004
  • This paper presents the stress and deformation characteristics of $9\%$ nickel based inner tank bottom plate in full containment LNG storage tank. When a . maximum hydrostatic pressure applies the bottom plate of inner tank, the maximum = f stress and displacement distributions of the bottom plate have been analyzed as ' functions of inclined angle of the bottom plate, and the thickness and length of the annular plate between the shell plate and bottom one. The calculated results indicate that the taper of the bottom plate is recommended by 100${\~}$200 : 1 for $140,000m^3$ storage capacity of the inner tank. The results recommend that the thickness of the annular plate is around 20mm and the length is greater than 3m for a maximum hydrostatic pressure of $140,000m^3$ tank capacity.

  • PDF

Memory Enhancing Effect of Codonopsis lanceolata by High Hydrostatic Pressure Process and Fermentation (초고압 발효 더덕 추출물의 인지능력 개선 효과)

  • Weon, Jin Bae;Lee, Bohyoung;Yun, Bo-Ra;Lee, Jiwoo;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • Alzheimer's disease (AD), most common form of dementia is characterized that memory deficit and loss of cognitive function. The Codonopsis lanceolata (C.lanceolata) was treated by high hydrostatic pressure process and fermentation. This study was evaluated cognitive enhancing effect C.lanceolata extract by high hydrostatic pressure process and fermentation and compared with common C.lanceolata extract using Morris water maze and passive avoidance test. And their neuroprotective effect on glutamate induced oxidative stress in HT22 cell was investigated by MTT assay. High hydrostatic pressure process and fermented C.lanceolata extract (HFCE) and common C.lanceolata extract (CCE) (100 and 300 mg/kg) were administered to mice. Results showed HFCE enhanced cognitive function than CCE as shown by decrease in escape latency time. HFCE increased the latency time of the passive avoidance test compared to CCE. Furthermore, HFCE showed significant neuroprotective effect against glutamate cytotoxicity in HT22 cells. These results indicate that high hydrostatic pressure process and fermented more improve spatial cognitive ability of C. laanceolata.

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

The Stress Distribution around a Circular Hole Reinforced by a Ring of Different Material in a Plate under Biaxial Loading (이질원환(異質圓環)으로 보강(補强)된 원형(圓形)구멍 주위(周圍)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-67
    • /
    • 1969
  • The effect of a circular hole reinforced by a ring of different material in a plate under biaxial loadings is considered. In this problem, an infinitely large flat is assumed. The reinforcing ring is of uniform rectangular cross-section of same thickness as the plate. The outer boundary of the ring is cemented to the inner boundary of the hole in the plate. The plate is subjected to hydrostatic tension and pure shear loadings. The stress distribution around the hole is obtained by means of the two dimensional theory of elasticity. To conform the validities of above solutions, a series of photo-elastic stress analysis for a composite model was carried out. Fair agreements were observed between two sets of values. The conclusions arrived at are as follows: 1) The theoretical solutions are exact ones for the case of infinitely large flat plate. 2) The solutions can be used for most case of engineering problem if the bonding between the plate and ring is perfect. 3) If the ratio of Young's moduli of the ring and the plate is increased, the stresses in the plate decrease whereas those in the ring increase. 4) The stress concentration near the hole has localized effect. 5) Under hydrostatic tension, maximum principal stress and maximum shear stress increase as the ratio of inner and outer diameters of the ring increases. 6) Under pure shear, the stresses depend upon angular orientations of the points and maximum principal stress and maximum shear stress appear at 45 degree. They increase as the ratio of inner and outer diameters of the ring increases.

  • PDF

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.