• 제목/요약/키워드: Hydropower plants

검색결과 57건 처리시간 0.027초

하수처리장 적용을 위한 Semi-카플란 수차가 장착된 마이크로수력발전 시스템: 기흥레스피아 사례 (Micro-Hydropower System with a Semi-Kaplan Turbine for Sewage Treatment Plant Application: Kiheung Respia Case Study)

  • 채규정;김동수;천경호;김원경;김정연;이철형;박완순
    • 대한환경공학회지
    • /
    • 제35권5호
    • /
    • pp.363-370
    • /
    • 2013
  • 소수력발전은 하수처리장 에너지 자립을 위한 효과적인 대안이다. 본 연구는 유량변동이 크고 유효낙차가 낮은 중소형 하수처리장(기흥레스피아) 적용을 위해 피치조절형 세미카플란(semi-kaplan) 마이크로수력발전의 적용 타당성을 평가하였다. 가변피치 semi-kaplan 수차는 유량조절을 위한 가이드베인은 생략하고 피치조절형 런너를 장착하여 기계적 결함은 줄이면서 유량변동이 큰 처리장에 특화된 기술이다. 마이크로수력발전 시스템은 설계조건(유량 0.35 $m^3/s$, 유효낙차 4.7 m)에서 90.2%의 수차효율 달성이 가능하였고 발전용량은 13.4 kW로 산정되었다. 설비가동률 74%로 가동 시 연간 약 86.8 MWh 에너지 생산을 통해 2.1%의 에너지 자립이 가능하고 이는 연간 49톤의 $CO_2$ 감축효과와 맞먹는다. 경제성 평가결과 초기 건설공사비가 200,000,000원 이하인 경우에는 내부수익률은 6.1%, 순현가는 15,539,000원, 편익-비용률은 1.08, 투자회수년은 15.5년으로 경제성이 충분한 것으로 나타났다.

시나리오 기반 수력플랜트 설비의 취약성 평가 (Scenario-based Vulnerability Assessment of Hydroelectric Power Plant)

  • 남명준;이재영;정우영
    • 한국방재안전학회논문집
    • /
    • 제14권1호
    • /
    • pp.9-21
    • /
    • 2021
  • 최근 신재생 에너지를 활용한 친환경 발전시설의 중요성이 대두되고 있으며 수력발전소는 매우 중요한 전력생산 및 공급원이다. 수력발전소는 일반적으로 대규모로 운용되고 다중 시설이 연계되어 있어 안전성 확보가 매우 중요하다. 본 연구에서는 이러한 수력플랜트 설비의 안전성을 평가하기 위해 시나리오 기반의 수충격에 따른 수압관로의 취약성 평가를 수행하였다. 자체 개발한 수충격 해석모델(TRANSHAM)과 기존 상용모델(SIMSEN)의 모의결과 및 모니터링 자료와의 비교를 통해 해석모델의 신뢰성을 검증하였고, 실제 운영중인 수력플랜트에 적용하여 발전설비 운영 중에 발생 가능한 수충격 시나리오를 구성하였다. 이를 바탕으로 시나리오 기반의 수압관로의 수충격 해석 및 취약성 평가를 수행하였다. 내·외부 로딩조건을 고려한 시나리오별 모의 결과, 발전설비 운영에 따라 수압관로의 취약성이 상이하게 나타났으며 내·외부 로딩조건의 조합에 따라 수압관로의 취약성에 큰 영향을 미치는 것으로 예측되었다. 본 연구에서 제시한 시나리오 기반의 해석기법은 향후 수충격에 따른 발전설비의 취약성을 평가하는데 정량적인 도구로 활용될 것으로 기대된다.

능동적 신재생에너지 생산을 통한 하수처리장 에너지자립화 향상 (Improving Energy Self-sufficiency in Municipal Wastewater Treatment Plant using Renewable Energy Production)

  • 강지훈;채규정;김동수;양희정;안영섭;김원경;김정현;박동을
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.643-643
    • /
    • 2012
  • Increasing energy prices and growing concerns about global warming address the need to improve energy self-sufficiency in many industrial and municipal sectors. Wastewater treatment plants (WWTPs) are representative of energy-consuming facilities in Korea, accounting for 5% of national energy consumption. We present renewable energy technologies and energy self-sufficiency scenarios in a municipal WWTP ($30,000m^3d^{-1}$) located in Yongin, South Korea. By employing photovoltaics (PV, 135 kW), small hydropower turbine (10 kW), and thermal energy from treated effluent (25 RT: refrigeration ton) within the WWTP, a total of 142 tonne of oil equivalent (toe) of energy was estimated to be generated, accounting for $365ton\;CO_2\;yr^{-1}$ of greenhouse gas emission reduction. Core renewable technologies under consideration include 1) hybrid solar PV system consisting of fixed PV, dual-axis PV, and building integrated PV, 2) low-head small hydropower plant specifically designed for treated effluent, 3) effluent heat recovery system for heating and air conditioning. In addition to these core technologies, smart operation and management scheme will be presented for enhancing overall energy savings and distribution within the WWTP.

  • PDF

CFD을 이용한 프란시스 수차의 내부유동 해석 (Performance Analysis of Francis Turbines by CFD)

  • 최현준;황영철;김유택;남청도;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2010
  • The conventional method to assess turbine performance is its model testing which becomes costly and time consuming for several design alternatives in design optimization. Computational fluid dynamics (CFD) has become a cost effective tool for predicting detailed flow information in turbine space to enable the selection of best design. In the present paper, Francis turbine of commercial small hydropower plants which is under 70kw is investigated. Solutions are investigated with respect to the hydraulic characteristics against an outward angle of guide vane, the number of guide vane and head (inlet velocity). By suitable modification of the runner shape, low pressure zone on the leading edge can be reduced. If the entire runner is to be optimized in this manner, flow simulation tests have to be carried out on a series of different geometrical shape.

  • PDF

물관련 설비를 이용한 소수력발전 성능분석 (Performance Analysis for Small Hydro Power at Existing Water Treatment Facilities)

  • 박완순;이철형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.134-137
    • /
    • 2008
  • A methodology to evaluate the performance analysis for small hydropower at existing water treatment facilities has been studied. It consists of two main parts; flow duration function which can describe existing water treatment facilities and performance analysis to estimate the output characteristics of small hydro power plants. The output performance characteristics for Mi-ho reservoir, Sum-kang low dam, Sun-cheon sewage treatment plant and Nam-dong purification plant were analyzed, using developed model. According to the simulation results, the predicted data show that the data were in good agreement with measured results. Also, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power at existing water treatment facilities.

  • PDF

소수력발전소의 성능예측 기법에 관한 연구 (A Study on the Performance Prediction Methodology of Small Hydropower Plant)

  • 박완순;이철형;정상만
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.894-898
    • /
    • 2006
  • A model, which can analyze the hydrological performance for small hydropower(SHP) plants having no flow duration characteristics has been studied and developed. System performance of existing SHP plant under operating was analyzed by using the developed model. The annual operational rate of SHP plant showed that the data were in good agreement with predicted results from the model. Based on these results, several SHP sites to be exploited were selected and the performance characteristics were analyzed by using the developed model. Also, primary design values such as design flow rate, plant capacity, and operational rate were suggested. As a result, it was found that the methodology used in this study is useful tool to predict the hydrological system performances of SHP sites.

  • PDF

하수처리장 방류수를 이용한 소수력발전 성능분석 (Performance Anaysis of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant)

  • 이철형;박완순
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.494-497
    • /
    • 2012
  • A methodology to predict the output performance of small hydro power using treated effluent in wastewater treatment plant has been studied. Existing plant located Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in wastewater treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed.

  • PDF

소수력발전소의 성능예측기법에 관한 연구 (A Study on the Performance Prediction Methodology of Small Hydropower Plant)

  • 이철형;박완순
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.742-747
    • /
    • 2005
  • A model, which can analyze the hydrological performance for small hydropower(SHP) plants having no flow duration characteristics has been studied and developed. System performance of existing SHP plant under operating was analyzed by using the developed model. The annual operational rate of SHP plant showed that the data were in good agreement with predicted results from the model. Based on these results, several SHP sites to be exploited were selected and the performance characteristics were analyzed by using the developed model. Also, primary design values such as design flow rate, plant capacity, and operational rate were suggested. As a result, it was found that the methodology used in this study is useful tool to predict the hydrological system performances of SHP sites.

  • PDF

The power sector of Mongolia: Current status and future opportunities

  • Myagmarsuren, Baldorj
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.69-75
    • /
    • 2020
  • Mongolia is located between Russia and China in Central Asia. In coal-rich corners, both the energy and energy sectors of our country prevail. Mongolia has vast resources of renewable energy and limited hydropower plants, such as wind and solar. In their first iNDC (intended Nationally Determined Contributions) submitted in 2015, Mongolia has pledged to increase the share of renewables capacity to 20% by 2020, and 30% by 2030 while reducing their energy related GHG emissions.

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

  • Koirala, Ravi;Chitrakar, Sailesh;Neopane, Hari Prasad;Chhetri, Balendra;Thapa, Bhola
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day's tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.