• Title/Summary/Keyword: Hydroponic system

Search Result 190, Processing Time 0.024 seconds

Effects of Medium and Planting Density on Growth and Yield of Seed Potatoes Grown in a Wick Hydroponic System (배지 및 재식밀도가 심지양액재배 씨감자의 생육 및 수량에 미치는 영향)

  • Kim, Chan-Woo;Song, Chang-Khil;Park, Jung-Sik;Mun, Hyun-Ki;Kang, Young-Kil;Kang, Bong-Kyoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • This study was carried out in 2002 to determine the usefulness of Jeju scoria for a component of a growth medium and optimum planting density of 'Dejima' seed potatoes (Solanum tuberosum L.) grown in a wick hydroponic system. The minitubers ($7.0{\pm}0.2\;g$) produced in an aeroponics system were planted at five planting densities (3 to 15 tubers/box; 19 to $95\;tubers/m^2$) in polystyrene boxes (51 cm long $\times$ 31 cm wide $\times$ 20 cm high) containing two media (perlite + peatmoss and Jeju scoria + peatmoss 1:2, v/v mixtures). There were no significant interactions between medium and planting density for the growth and tuber yield traits. Shoot growth and the number of tubers per plant were not significantly affected by the media. However, tuber yield was higher in the perlite + peatmoss mixture than in the Jeju scoria + peatmoss mixture. The percentage of underdeveloped plants ranged from 8.3 to 14.7% at four lower planting densities (3 to 12 tubers/ box), and was 25.8% at the highest planting density (15 tubers/box). As planting density was increased from 3 to 15 tubers per box, seed potato (${\geq}5\;g$ tuber) number increased from 101 to 269 and yield from 6.3 to $11.6\;kg/m^2$. These results indicate that the perlite + peatmoss mixture might be more suitable for seed potato production in the wick hydroponic system, and considering the percentage of underdeveloped plants and tuber yield, optimum planting density would be 56 to $76\;tubers/m^2$ in the system depending on availability of seed potatoes.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

Effect of Planting Date and Substrate on the Growth and Flowering of Hydroponically-grown Carnation (정식시기와 배지의 종류가 양액재배 카네이션의 생장과 개화에 미치는 영향)

  • 강종구;이범선;정순주
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 1998
  • This study was conducted to investigate growth and flowering of hydroponically-grown carnation as affected by substrate and planting date, Three substrates, coir, perlite, and coir+perlite(1:1. v/v), and two planting dates. May 1 and September 1 were used. Plant height and stem diameter at harvesting time of cut flowers were greater for the September 1 planting than for the May 1 planting. The plants planted on May 1 produced flowers with weak stems and short stem lengths. In addition, flower weight and blossom width were gloater for the September 1 planting than for the Mar 1 planting. The planting date had no significant effect on the number of petals, The carnation planted on May 1 flowered 50 days earlier compared to those Planted on September 1. Plant height and number of petals were the greatest in the plot of coir substrate. The results indicated that for commercial production of cut carnations in a hydroponic system, planting on September 1 is better than May 1. In addition. the results confirm that coir is the superior substrate for the production of cut carnations in a hydroponic system compared to either Perlite or coir+perlite mixture.

  • PDF

Effect of Substrates on the Growth, Yield and Fruit Quality of Strawberry in Elevated Hydroponic System (딸기의 고설수경재배에서 배지의 종류가 생육, 수량 및 과실의 품질에 미치는 영향)

  • Jun, Ha-Joon;Hwang, Jin-Gyu;Son, Mi-Ja;Choi, Moon-Hwan;Cho, Moon-Su
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.317-321
    • /
    • 2006
  • The experiment has investigated the effects of growth, yield, and fruit quality of strawberries by three different kinds of substrates. Commonly used media cocopeat, cocopeat mixed with rice hulls and compound nursery media were used to select a proper medium by comparing growth status, yield and fruit quality. Number of leaves was most in cocopeat substrate, and leaf length and leaf width were highest in compound nursery media. Fruit weight was heaviest in compound nursery media, but there were no significant statistical differences in fruit length, fruit width and soluble solids of fruit. Number of fruits per plant was much in compound nursery media and cocopeat than cocopeat mixed with rice hulls. The most yield per plant was in compound nursery media and the least it was in cocopeat mixed with rice hulls. The results of this experiment will be utilized in the new substrate application for strawberry hydroponics.

Effect of Silicon on Albinism of Strawberry in Elevated Hydroponic System (딸기의 고설수경재배에서 백납과 발생에 미치는 규소의 영향)

  • Jun, Ha-Joon;Hwang, Jin-Gyu;Son, Mi-Ja;Choi, Moon-Hwan;Yoon, Hae-Suk
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.322-326
    • /
    • 2006
  • This experiment has investigated the effects of silicon on albinism of strawberry. Albino fruit appeared after a month of treatment of potasium silicate(Si) in nutrient solution. When $200mL{\cdot}L^{-1}$ of Si applied, number of albino fruit increased over 90% of total amount of fruit, and the symptom remained latest any other treatment. The fruit length of the strawberries in Si treatments were longer than control treatment. However, the diameter and weight of fruit decreased in treatment of Si. The soluble solids of fruits, numbers of fruit and yield per plant were no significant differences among treatments. The rate of albino fruit was significantly increased with increase of concentration of Si. The results of this experiment will be utilized for the cultivation in the new substrate application for strawberry hydroponics.

ICT-Based Smart Farm Factory Systems through the Case of Hydroponic Ginseng Plant Factory (수경인삼 식물공장 사례를 통한 ICT 기반 스마트 팜 팩토리 시스템)

  • Hwang, Sung-Il;Joo, Jong-Moon;Joo, Seong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.780-790
    • /
    • 2015
  • Studies for a plants factory is progressing for cultivating various plants by the needs of the times and industry around world. However most studies is carried out only in lab sized plants factory. It does not consider an economic feasibility. The study for a large scale plants factory is very required to get an economic gain. In this paper we has been studying a smart farm factory based on ICT using the hydroponics ginseng. The smart farm factory is to extend a concept of the general plants factory to full automated factory. The factory can collect the information about growing of plants and automate operating and management of factory like the existing plants factory. Also it is the total plants factory management system, which analyzes the collected information for optimized growth and development of plants and applies the result to the system back.

The Effect of Photosynthesis, Stomatal Conductivity, Thermotolerance and Growth on Foliar Fertilization of Carbonated Water at Lettuce Hydroponic Cultivation (상추 양액재배 시 탄산수 엽면시비가 광합성, 기공전도, 내서성, 생육에 미치는 영향)

  • Woo, Y.H.;Kim, D.E.;Lee, J.W.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Foliar fertilization of carbonated water during lettuce hydroponic cultivation was increased photosynthetic rate and stomatal conductance as higher carbon dioxide concentration of carbonated water The higher the carbon dioxide concentration in the carbonated water was better growth of lettuce. However, the carbon dioxide concentration of 500 ppm and 700 ppm in the carbonated water was increased the tip-burn occurrence, and the yield was higher in the 300 ppm. the carbon dioxide concentration of 300 ppm in the carbonated water was lower in the fresh weight but increased yield resulted in the lower of the tip-burn occurrence The high temperature limits for growth were 32℃ in the control, 33℃ in the 300ppm and 34℃ in the 500 ppm according to analyze chlorophyll fluorescent Fo. The high temperature tolerance in lettuce increased approximately 4℃ by foliar fertilization treatments of carbonated water under this experiment conditions. Also the activity of SOD(superoxide dismutase), the antioxidant enzyme, was higher with high carbon dioxide concentration of the carbonated water.

Control of Phythophthora capsici and residual characteristics by drenching of pesticides on tomato in hydroponic culture system (약제 관주처리에 의한 양액재배 토마토의 역병 방제 및 농약잔류 특성)

  • Ihm, Yang-Bin;Lee, Jung-Sup;Kyung, Kee-Sung;Kim, Chan-Sub;Oh, Kyeong-Seok;Jin, Yong-Duk;Lee, Byung-Moo
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • To establish effective and safe control method against Phytophthora root rot caused by Phytophthora capsici on tomato in hydroponic culture, three pesticides, oxadixyl copper hydroxide 8% WP, metalaxyl copper oxychloride 15% WP, and dimethomorph. dithianon 38% WP at 4 concentration levels were tested on potato dextrose agar medium inoculated with Phytophthora capsici. All pesticides inhibited mycelial growth, but two pesticides of them, metalaxyl copper oxychloride WP and dimethomorph. dithianon WP, were selected as effective pesticides for the efficacy test in a hydroponic culture. Forty days after transplanting of tomato seedlings, 4 ml of sporangia of P. capsici (about 25 sporangi/ml) per plot was inoculated around tomato plant root, and then 5 days after inoculation, the pesticides diluted at 5,000 times were drenched 1, 2 or 3 times per plot on the culture cube at 15 days interval. Fifteen days after drenching, tomato fruits and hydroponic culture solution were sampled for the analysis of pesticide residues. Dimethomorph was detected 0.001 and 0.003 mg/kg in tomato of the plots sprayed 2 and 3 times with dimethomorph dithianon WP of which detection levels were far below compared with 1.0 mg/kg of the Korean MRL of dimethomorph on tomato. Incidences of Phytophthora root rot were $30.5{\sim}50%$ in the plots drenched at 1 or 2 times with metalaxyl.copper oxychloride WP, and $16.7{\sim}25%$ in the plots treated with dimethomorph dithianon WP. However, there was no incidence of Phytophthora root rot in the plots treated at 3 times with both of pesticides, showing no phytotoxic effect. Based on the results, the drenching of these pesticides on the culture cube could be recommended as a very safe and effective control method for Phytophthora root rot in tomato.

Control of Phythophthora capsici and Residual Characteristics by the Pesticides Tank-Mixed in Tomato Hydroponic Culture System (농약의 양액 탱크내 혼합처리에 의한 토마토 역병 방제 효과 및 잔류 특성)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Kim, Cban-Sub;Park, Byung-Jun;Lee, Jung-Sup
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.264-270
    • /
    • 2003
  • To control effectively and safely Phytophthora root rot caused by Phytophthora capsici on tomato in hydroponic culture, tank-mixing method was considered with two pesticides, metalaxyl copper oxychloride 50% WP and dimethomorph dithianon 38% WP. Forty days after transplanting of tomato seedlings, 4 mL of sporangia of P. capsici (about 25 sporangi/mL) per plot was inoculated around tomato plant roots, and at 5 days after inoculation, the pesticides tank-mixed at three dilution levels, 12,500, 25,000 and 50,000, were drenched 1, 2 or 3 times per plot on the culture cube every 15 days for metalaxyl copper oxychloride 50% WP and every 10 days for dimethomorph dithianon 38% WP. During the drenching period, the residue levels of metalaxyl and dimethomorph in hydroponic culture solution were similar to the initial levels but the level of dithianon was drastically decreased from one day after tank-mixing. In tomato drenched with metalaxyl copper oxychloride 50% WP, metalaxyl was detected $0.02\sim0.04$ mg/kg in all diluted plots. Dimethomorph was detected $0.012\sim0.021$, $0.001\sim0.006$ and $0.001\sim0.003$ mg/kg in 12,500, 25,000 and 50,000 times diluted plots, respectively, while dithianon was detected 0.005, 0.003 mg/kg in 12,500 and 50,000 times diluted plots, respectively. The detection levels of three pesticides were far below compared with the levels of Korean MRLs. Incidences of Phytophthora root rot were not found in all the plots, but phytotoxic responses were recognized in the 12,500 times diluted plots of both pesticides. Based on the above results, the drenching of the culture solution tank-mixed with these pesticides could be recommended as a very safe and effective method to control Phytophthora root rot in tomato in hydroponic culture.