• Title/Summary/Keyword: Hydroponic system

Search Result 190, Processing Time 0.029 seconds

Reduction of Stem Inside-cavity and Improvement of Flower Quality in Chrysanthemum 'Baekma' by pH Stabilization and Foliar Spray of Ethephon (양액 pH 안정화와 에세폰 살포에 의한 국화 '백마'의 줄기동공 경감과 절화품질 향상)

  • Hwang, In Taek;Cho, Kyung Chul;Kim, Hee Gon;Ki, Gwang Yeon;Yoon, Bong Ki;Choi, Kyung Ju;Lim, Jin Hee;Choi, Sung Ryul;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.238-243
    • /
    • 2010
  • This study was conducted to investigate effects of nutrient solution pH control agent and foliar spray of ethephon on the reduction of stem inside-cavity and improvement of flower quality in chrysanthemum 'Baekma'. Changes of pH in nutrient solution as affected by the kind of pH control agent showed more settled pattern in the plot of KOH treatment than in others. Plant growth and development such as cut flower length, leaf numbers, cut flower weight and petal number were the greatest in the plot of KOH. However, the size and area of stem cavity was large in KOH rather than $KHCO_3$. As changes in the absorbing patterns of mineral elements as affected by nutrient solution pH control agent in closed system, contents of total nitrate, phosphorus, potassium and calcium by $KHCO_3$ was absorbed into the plant less than KOH, so that it remained a lot of mineral element residues rather than KOH in closed system. Plant growth as affected by the foliar spray of ethephon showed growth retardation effect in the plot of solution diluted to 1 : 500 and growth promotion effect in the plot of solution diluted to 1 : 1,000 or 1 : 2,000. The number of petals was the best in the plot of foliar spray of ethephon solution diluted to 1 : 1,000 before flowering at 45 days showing 331 petals compared to control showing 302 petals. The size and area of stem cavity as affected the foliar spray of ethephon was smaller 1 mm and 7%, respectively, in the plot of solution diluted to 1 : 2,000 before flowering at 30 days than in control. Therefore, treating pH stabilization using KOH after floral initiation stage with the foliar spray of ethephon solution diluted to 1 : 2,000 before flowering at 30 days would help to reduce stem cavity size and improve flower quality in hydroponically grown chrysanthemum 'Baekma'.

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics (수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질)

  • Choi, Su Hyun;Kim, So Hui;Lee Choi, Gyeong;Jeong, Ho Jeong;Lim, Mi Young;Kim, Dae Young;Lee, Seon Yi
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Comparisons of Growth and Fruit Quality of Citrullus lanatus cv. Mudeungsan and Citrullus vulgaris cv. Dalgona Grown in Fertigation and Soilless Culture (무등산수박과 달고나수박의 관비재배와 양액재배에 있어서 생육 및 과실품질의 비교)

  • 이범선;정순주;박순기
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 1999
  • This experiment was conducted to compare with the growth and fruit quality of Citrullus lanatus cv. Mudeungsan and Citrullus vulgaris cv. Dalgona grown in fertigation and soilless culture. Seeds were sown on April 16 and transplanted on April 24, 1998. Cultural systems used in fertigation and soilless culture beds using mixed substrate, coir dust (50%) and perlite (50%). In the plot of fertigation system, the number of leaves of cv. Dalgona were increased more than that of cv Mudeungsan, but leaf area shown inversed trend. Plant growth shown greater in soilless culture than those of fertigation culture. In regardless of cultural systems, soluble solid content in fruit was higher in the cv. Dalgona than that of cv. Mudeungsan, but fruit fresh weight was greater in cv. Mudeungsan compare to the cv Dalgona. Nitrate content in petiole sap of watermelon in regardless of cultivars and cultural systems was 11.4∼13.4mg/gFW on 15 days after transplanting, and then increased to 17.1∼20.6mg/gFW on the fruit growth stage. Phosphorous content was 3.7∼5.7mg/gFW in the early growth stage while decreased to 0.6∼1.1mg/gFW from maturing stage to harvesting stage. Potassium content was increased to 5.8∼6.6mg/gFW in the early growth stage while decreased to 4.0∼4.8mg/gFW from pollination stage to harvesting stage. Calcium content in spa petiole of watermelon was higher in soilless culture as 3.4∼4.1mg/gFW than 2.5∼3.5mg/gFW of fertigation culture, but calcium content in fertigation culture during maturing stage was higher than that of soilless culture. The tendency of magnesium uptake was higher in fertigation culture than that of soilless culture, and was similarly absorbed in the range of 0.9∼1.3mg/gFW in regardless of cultural method after pollination. It was demonstrated that cv. Mudeungsan can be adapted to soilless culture and improved the fruit quality. Consequently, hydroponic possibility for year round culture in the greenhouse was recognized.

  • PDF

Effect of Media on the Growth of 'Pechika' Strawberry Grown in Hydroponics on Highland in Summer (사계성 페치카' 딸기의 고랭지 여름철 양액재배시 배지선택)

  • Rhee Han-Cheol;Kang Nam-Jun;Rho Il-Rae;Jung Ho-Jung;Kwon Joon-Kook;Kang Kyung-Hee;Lee Jae-Han;Lee Sung-Chan
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2006
  • This experiment was conducted to investigate the optimal media for 'Pechika' ever-bearing strawberry grown in hydroponic culture system in summer highland. Three mixed media (1:1, v/v) of peatmoss with perlite, rice hull, and granular rockwool, and four solution strengths of EC 0.5, 0.75, 1.0 and $1.25 dS{\cdot}m^{-1}$ were tested. Root zone temperature in peatmoss+perlite media was 1 to $3^{\circ}C$ lower than in the other media. The culture medium of mixing to peat moss and perlite was most effective in producing good yield and fruit quality. The culture medium of mixing to peat moss and perlite was the highest about 1,632kg/10a to yield yearly average, but was very undulating 732 kg/10a to yield in 2004 year and 3,013kg/10a in 2003 year. The deformed fruits were increased when the solution strength was increased, especially in EC $1.25dS{\cdot}m^{-1}$. The soluble solids and the acidity content of fruits were increased with higher solution strength regardless of media. The uptake of Ca and Mg was inhibited at higher solution strength, and the uptake of N, P and K was promoted. Therefore, the culture medium of mixing to peat moss and perlite was the most suitable culture medium to product strawberry in summer, because it had the highest yield even though fruit quality among treatments was not significant.

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution (양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진)

  • Moon-Sun Yeom;Jun-Soo Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.