• 제목/요약/키워드: Hydrophobicity

검색결과 766건 처리시간 0.024초

Protein Context-Dependent Hydrophobicity of Amino Acids in Protein

  • Cho, Hanul;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.163-166
    • /
    • 2016
  • Hydrophobicity is the key concept to understand the water plays in protein folding, protein aggregation, and protein-protein interaction. Traditionally, the hydrophobicity of protein is defined based on the scales of the hydrophobicity of residue, assuming that the hydrophobicity of free amino acids is maintained. Here, we explore how the hydrophobicity of constituting amino acids in protein rely on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we calculate and investigate the hydration free energy of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein total charge being positive or negative. We also observe that amino acids in the ${\beta}-sheets$ display more enhanced the hydrophobicity than amino acids in the loop, whereas those in the ${\alpha}-helix$ do not clearly show such a tendency. And the salt-bridge forming amino acids also exhibit increase of the hydrophobicity than that with no salt bridge. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

글루텐의 표면소수성에 미치는 전해질, pH 및 다시마(Sacchrina japonicas) 알긴산나트륨의 분자량의 영향 (Effect of pH, Electrolytes, and Molecular Weights of Sodium Alginate (Prepared from Sacchrina japonicas) on Gluten Surface Hydrophobicity)

  • 임영선;유병진
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.543-551
    • /
    • 2021
  • Changes in gluten surface hydrophobicity, which play an important role in the functional characteristics of protein, were measured according to various protein concentrations, pH levels, electrolytes concentrations, and alginate molecular weights using 8-anilino-1-naphthalene sulfonic acid (ANS) as a fluorescent probe. Gluten surface hydrophobicity decreased as gluten concentration increased, reaching a maximum pH of 7.0. The effects of alginate molecular weights and alginate concentration on the surface hydrophobicity, emulsifying activity index (EAI), and emulsion stability index (ESI) of gluten-sodium alginate dispersion (GAD) were measured. Gluten surface hydrophobicity rapidly increased the asl NaCl concentration of gluten solution up to 300 mM and showed no significant increase above 300 mM. However, gluten surface hydrophobicity notably decreased until the concentration of CaCl2 and MgCl2 reached 30 mM, indicating no significant variations above 30 mM. GAD surface hydrophobicity increased as the concentration and molecular weight of sodium alginate increased, however, gluten concentration increased as the GAD surface hydrophobicity decreased. The EAI and ESI of GAD increased as both molecular weight and concentration of sodium alginate increased.

실리콘 고무의 소수성에 미치는 첨가된 실리콘 오일의 영향 (Effects of Added Silicone Oils on the Surface Hydrophobicity of Silicone Rubber)

  • 한동희;조한구;강동필;민경은
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.46-51
    • /
    • 2006
  • This paper reports on the effects of silicone oils, used as processing agents, on the recovery of hydrophobicity of silicone rubber. The recovery of hydrophobicity was evaluated by the measuring the contact angle, the surface electrical resistance and SEM. Here, we formed artificial contamination on the surface of samples, which scratched by sand papers and alumina powders. There was small recovery of hydrophobicity on the surface of SIR-A that silicone oil was not added. In both oil-added samples, SIR-B and SIR-C, recovery of hydrophobicity was achieved greatly. The surface of SIR-C showed that a lot of silicone oil was observed due to migration of oil, relatively in comparison with SIR-B. The tendency of recovery of hydrophobicity expressed by contact angle was in a good agreement with electrical property as determined by surface resistivity.

Hydrophobicity of Amino Acids in Protein Context

  • Cho, Hanul;Chong, Song-Ho;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.103-113
    • /
    • 2014
  • Hydrophobicity is the key concept to understand the role of water in protein folding, protein self-assembly, and protein-ligand interaction. Conventionally, hydrophobicity of amino acids in a protein has been argued based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acids depends on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we compute and analyze the hydration free energy - free energy change upon hydration quantifying the hydrophobicity - of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein net charge being positive or negative. We also observe that amino acids in the central ${\beta}$-strand sandwiched by ${\beta}$-sheets display more enhanced hydrophobicity than free amino acids, whereas those in the ${\alpha}$-helix do not clearly show such a tendency. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung;Nam, Ky-Youb;Cho, Kwang-Hwi;Choi, Seung-Hoon;Noh, Jae-Sung;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1742-1750
    • /
    • 2003
  • In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

pH, 전해질의 농도 및 알긴산 분자량이 분리콩단백질의 표면소수성에 미치는 영향 (Effects of pH, Electrolyte Concentrations, and Alginate Molecular Weights on Surface Hydrophobicity of Soy Protein Isolates)

  • 임영선;유병진
    • 한국식품영양과학회지
    • /
    • 제45권9호
    • /
    • pp.1285-1292
    • /
    • 2016
  • 분리콩단백질(SPI, soy protein isolate) 농도, pH, 전해질의 종류와 농도, alginates의 농도와 분자량이 SPI의 표면소수성에 미치는 영향을 조사한 결과는 다음과 같다. SPI 농도가 증가할수록 표면소수성은 감소하였다. SPI의 표면소수성이 pH 7.0에서 최대값을 나타내었다가 pH가 7.0을 기준으로 증가 혹은 감소함에 따라 표면소수성이 감소하는 경향을 나타내었다. SPI의 표면소수성은 NaCl의 농도가 100 mM까지 증가함에 따라 급격히 증가하지만 더 이상의 농도에서는 변화가 없었다. $CaCl_2$$MgCl_2$의 농도가 각각 50 mM과 30 mM까지 증가할수록 SPI의 표면소수성이 급격히 감소하였지만, 그 이상의 농도에서는 큰 변화가 없었다. Na-alginate의 농도와 분자량의 증가함에 따라 SPI의 표면소수성이 감소한 것으로 나타났다. Na-alginate의 분자량이 증가함에 따라 표면소수성의 증가속도가 감소하였다.

사과주(酒) 산막효묘(産膜酵母) Hansenula beijerinckii FY-5 의 소수성(疏水性)과 산막성(産膜性)과의 관련성(關聯性) (Relationship between Hydrophobicity and Pellicle Formation in a Film Strain of Hansenula beijerinckii FY-5 Isolated from Apple Wine)

  • 송형익;정기택
    • 한국식품과학회지
    • /
    • 제17권3호
    • /
    • pp.203-207
    • /
    • 1985
  • 저장사과주에서 분리(分離) 동정(同定)한 산막효모(産膜酵母) Hansenula beijerinckii FY-5의 소수성(疎水性)과 피막형성(皮膜形成)과의 관계(關係)를 조사하였다. 비(非)이온계(系) 계면활성제(界面活性劑) 첨가에 의해 균생육(菌生育)은 가능(可能)하지만 피막(皮膜)이 전혀 형성(形成)되지 않으며 소수도(疎水度)도 크게 낮아지는 사실로 미루어 볼때, 피막형성(皮膜形成)에는 효모세포(醉母細胞)를 배지표면(表面)에 보존(保持)시키는 어떤 인자(因予)가 요구되며 그 인자(因子)가 바로 효모세포표면(酵償細胞表面)외 소수성(疎水性)이 아닌가 생각된다. 산막성효모(産膜性酵母)에 있어서는 소수도(疎水度)가 클수록 피막형성(皮膜形成)이 왕성하였으나 비산막성효모(非産膜性酵母)는 대체로 소수도(疎水度)가 낮았다. 탄소원이 에타놀일때 소수도(疎水度)가 높았으며 pH의 상승에 따라 소수도(疎水度)는 감소(減少)하는 경향이었다. 배양기간별로는 균생육(菌生育)과 더불어 소수도(疎水度)도 비례적으로 증가하여 정상기(正常期)에 최대치를 보였다.

  • PDF

표면특성 변화에 따른 유류분해 미생물의 토양내 거동성 조절

  • 류두현;목지예;최상일;김용미;이경애
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.360-362
    • /
    • 2003
  • The adhesion of hydrocarbon degrading bacteria(HDB) differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was modified chemically and physiologically. Modified adhesion deficient mutant of HDB was selected in a soil column assay Physiologically and chemical modification increased cell surface hydrophobicity. Cell surface charcteristis including BATH and zeta potential were measured. Physiological modification using ampicillin was not stable, but chemical modification was stabel. Hydrocarbon degrading potential was measured for modified and unmodifed HDB.

  • PDF

유류분해 미생물의 표면특성에 따른 분해성 및 거동성 변화

  • 류두현;목지예;최명석;김진명;김동일;전경화;박소연
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.273-276
    • /
    • 2004
  • The adhesion of hydrocarbon degrading bacteria(HDB) differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was modified chemically and physiologically. Modified adhesion deficient mutant of HDB was selected in a soil column assay. Physiologically and chemical modification increased cell surface hydrophobicity. Cell surface characteristics including BATH and FTIR were measured. Physiological modification using ampicillin was not stable, but chemical modification was stable. Hydrocarbon degrading efficiency was measured of TPH modified and unmodifed HDB.

  • PDF

Increased Cell Surface Hydrophobicity of A Lipopolysaccharide-defective Mutant of Bradyrhizobium japonicum

  • JAE-SEONG S0;PAE, KYEONC-HOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.241-243
    • /
    • 1995
  • A lipopolysaccharide (LPS) defective mutant of Bradyrhizobium japonicum was characterized in terms of its cell surface hydrophobicity (CSH). By monitoring the kinetics of adhesion to hexadecane the LPS mutant was found to be far more hydrophobic than the wild type strain; the removal coefficients were 4.65 $min^{-1}$ for the mutant, as compared with only 2.40 $min^{-1}$ for the wild type. The possible role of cell surface hydrophobicity of B. japonicum in nodulation process is discussed.

  • PDF