• Title/Summary/Keyword: Hydrophobic Interaction

Search Result 305, Processing Time 0.022 seconds

Fabrication of DNA Chip Using a Hydrophobic Template (소수성 Template를 이용한 DNA칩의 제작)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1315-1316
    • /
    • 2006
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

Development of DNA Chip Microarray Using Hydrophobic Template (소수성 Template를 이용한 DNA Chip Microarray의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.271-274
    • /
    • 2004
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

A Statistical Thermodynamic Study on the Conformational Transition of Oligopeptide Multimer

  • Kim, Yong Gu;Park, Hyeong Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • The conformational transition of oligopeptide multimer,-(HPPHPPP)n-, is studied (H:hydrophobic amino acid, P:hydrophilic amino acid). The helix/coil transitions are detected in the multimer. The transition depends on the number of amino acid in the sequence, the concentration of the oligopeptide, and temperature which affects helix stability constant (${\xi}$) and hydrophobic interaction parameter (wj). In the thermodynamic equilibrium system jA${\rightarrow}$Aj (where A stands for oligopeptide monomer), Skolnick et al., explained helix/coil transition of dimer by the matrix method using Zimm-Bragg parameters ${\xi}$ and $\sigma$ (helix initiation constant). But the matrix method do not fully explain dangling H-bond effects which are important in oligopeptide systems. In this study we propose a general theory of conformational transitions of oligopeptides in which dimer, trimer, or higher multimer coexists. The partition of trimer is derived by using zipper model which account for dangling H-bond effects. The transitions of multimers which have cross-linked S-S bonds or long chains do not occur, because they keep always helical structures. The transitions due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.

Enantiomeric Separation of Amino Acids Using N-alkyl-L-proline Coated Stationary Phase

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1992
  • Enantiomeric separation of underivatized amino acids using N-alkyl-L-proline (octyl, dodecyl or hexadecyl) coated HPLC has been accomplished. The anchoring N-alkyl groups of L-proline provides a permanent adsorption of there solving chiral agent on the hydrophobic interface layer of a reversed phase. The factors controlling retention and enantioselectivity such as the Cu(II) concentration, pH of the eluent, the type and concentration of organic modifier in the hydroorganic eluent, and extent of coating were examined. The elution orders between D- and L-amino acids were consistent, L-forms eluting first, except histidine and asparagine. The extremely high enantioselectivity $(\alpha$ upto 13 for proline) is observed. The retention mechanism for the chiral separation can be illustrated by a complexation and hydrophobic interaction.

Some Model Solute Affinity for a Tactic p-HEMA Membranes by K$_D$ Measurement

  • Lee, Eun-Hee;Jeon, Sang-Il;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.175-178
    • /
    • 1984
  • Two series of membranes have been prepared by postcrosslinking highly syndiotactic and isotactic poly (2-hydroxyethyl methacrylate), P(HEMA). The crosslinker used was hexamethylene diisocyante (HMDIC). The distribution coefficients (K$_{D2}$) of the model solutes such as urea (and thiourea), their derivatives, homologous alcohol series and amide sreies in water-swollen tactic P(HEMA) membranes at $25^{\circ}C$ were mesaured. In addition, the concentration effects of acetamide and butyramid were also measured. On the basis of hydrophobic interaction and the structural factors of tactic P(HEMA) membranes, the hydrophobic adsorption of the solutes in the polymer matrix were discussed. The results showed that the more hydrphobic the solute is, the higher the $K_{D2}$ value is. And the polymer conformation also affects the distribution of solvents.

The Interaction of HIV-1 Inhibitor 3,3',3",3‴-Ethylenetetrakis-4-Hydroxycoumarin with Bovine Serum Albumin at Different pH

  • Dong, Sheying;Yu, Zhuqing;Li, Zhiqin;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2063-2069
    • /
    • 2011
  • We studied the interaction of 3,3',3'',3'''-ethylenetetrakis-4-hydroxycoumarin (EHC) with bovine serum albumin (BSA) in acetate buffer and phosphate buffer with different pH values by UV-vis absorption spectrometry and fluorescence spectrometry respectively. It was found that the pH values of the buffer solutions had an effect on the interaction process. In acetate buffer of pH 4.70, the carbonyl groups in EHC bound to the amino groups in BSA by means of hydrogen bond and van der Waals force, which made the extent of peptide chain in BSA changed. By contrast, in phosphate buffer of pH 7.40, hydrophobic force played a major role in the interaction between EHC and BSA, while the hydrogen bond and van der Waals force were also involved in the interaction. The results of spectrometry indicated that BSA could enhance the fluorescence intensity of EHC by forming a 1:1 EHC-BSA fluorescent complex through static mechanism at pH 4.70 and 7.40 respectively. Furthermore, EHC bound on site 1 in BSA.

The Interaction of Polysaccharides Isolated from Auricularia Polytricha with Human Serum Albumin

  • Wang, Wei;Zhang, Guoguang;Zou, Jinmei
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Polysaccharides have attracted great attention for their wide range of applications in biological and medical fields. In this paper, the interaction of polysaccharides with human serum albumin (HSA) was systematically investigated by fluorescence (FL) spectroscopy and circular dichroism (CD) spectra under different conditions. The Stern-Volmer quenching constants ($K_a$) at different ionic strength and pH were calculated, and information of the structural features of HSA was discussed. FL and CD results indicate that both hydrophobic and electrostatic interactions play important roles during the binding process. The quenching of the fluorescence resulting the binding of polysaccharides and HSA is static.

Physicochemical Characterization and Carcinoma Cell Interaction of Self-Organized Nanogels Prepared from Polysaccharide/Biotin Conjugates for Development of Anticancer Drug Carrier

  • Park Keun-Hong;Kang Dong-Min;Na Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1369-1376
    • /
    • 2006
  • Self-organized nanogels were prepared from pullulan/biotin conjugates (PU/Bio) for the development of an effective anticancer drug delivery system. The degree of biotin substitution was 11, 19, and 24 biotin groups per 100 anhydroglucose units of pullulan. The physicochemical properties of the nanogels (PU/Bio1, 2 and 3) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all the samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CACs) of the nanoparticles in distilled water were $2.8{\times}10^{-2},\;1.6{\times}10^{-2}$, and $0.7{\times}10^{-2}mg/ml$ for the PU/Bio1, 2, and 3, respectively. The aggregation behavior of the nanogels indicated that biotin can perform as a hydrophobic moiety. To observe the specific interaction with a hepatic carcinoma cell line (HepG2), the conjugates were labeled with rhodamine B isothiocyanate (RITC) and their intensities measured using a fluorescence microplate reader. The HepG2 cells treated with the fluorescence-labeled PU/Bio nanoparticles were strongly luminated compared with the control (pullulan). Confocal laser microscopy also confirmed internalization of the PU/Bio nanogels into the cancer cells. Such results demonstrated that the biotin in the conjugate acted as both a hydrophobic moiety for self-assembly and a tumor-targeting moiety for specific interaction with tumor cells. Consequently, PU/Bio nanogels would appear to be a useful drug carrier for the treatment of liver cancer.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Effects of Average Molecular Weights, their Concentrations, Ca++ and Mg++ on Hydrophobicity of Solution of Na-Alginates Prepared from Sea Tangle Saccharina japonicus Produced in East Coast of Korea (평균분자량, 농도, 칼슘 및 마그네슘 이온이 동해안 다시마(Saccharina japonicus) Na-alginates의 소수성에 미치는 영향)

  • Lim, Yeong Seon;Yoo, Byung-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.542-548
    • /
    • 2018
  • We investigated the effects of Na-alginates's average molecular weight (AMW), their concentrations and divalent metal ions on hydrophobic interaction of solution of Na-alginates in sea tangle produced Saccharina japonicus in East Coast of Korea. As the AMWs of Na-alginates decreased, the formations rates of hydrophobic micro domains and pre-micelles between intermoleculars of Na-alginates were increased. The pre-micelles between Na-alginates chains fully were formed when their concentrations reached 0.2%. In the effects of $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ on the hydrophobicity of Na-alginates solution, when the AMWs of Na-alginates were increased, the formation rates of hydrophobic micro domains produced by $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ in alginates chains were increased. When $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ concentrations that were needed to form gels of alginates solutions were insufficient, the formations of pre-micelle in alginates having large AMW were more incomplete than those of small AMW. In the increasing range from 0.01 to 0.1 mM in divalent metal ion concentration, the formation rate of pre-micelle in alginates solution added $Ca^{{+}{+}}$ were more faster than that of $Mg^{{+}{+}}$.