• Title/Summary/Keyword: Hydrophobic/hydrophilic surface

Search Result 310, Processing Time 0.023 seconds

Characterization and Modification of Low Molecular Water-Soluble Chitosan for Pharmaceutical Application

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1303-1307
    • /
    • 2003
  • The low molecular water-soluble chitosan nanoparticles (LMWSC-NPs) were prepared, which was modified with hydrophilic and hydrophobic moieties to evaluate the potential for pharmaceutics application. The synthesis of LMWSC-NPs was identified by FT-IR and $^1H$-NMR spectra. Also, we measured the photon correlation spectroscopy (PCS), transmission electron microscope (TEM) and atomic force microscope (AFM) to investigate the characteristics and morphology of the LMWSC-NPs. At the PCS measurement, the more increase the number of substitutive group, the more decrease the positive charge of LMWSC-NP surface. From the results of TEM and AFM, spherical morphologies were observed, and their sizes were 30-150 nm. Resultantly, LMWSC-NPs prepared in this experiment will be expected as a suitable device for the drug targeting system.

HYDROLYZED GINSENG-SAPONIN QUATERNARY; A NOVEL CONDITIONING AGENT FOR HAIR CARE PRODUCTS

  • Kim, Young-Dae;Kim, Chang-Kew;Lee, Chung-Nam;Ha, Byung-Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.14 no.1
    • /
    • pp.16-37
    • /
    • 1988
  • A new quaternary ammonium compound, hydrolyzed ginseng-sapoin quaternary (HGSQ), from hydrolyzed Korean ginseng-saponin and 2, 3-epoxypropyltrimethyl ammonium chloride has been developed as a conditioning agent for hair care products. This structure has the hydrophilic group from the introduced cationic and the hydrophobic group from the aglycone of ginseng saponin. Its properties: surface tension, conductivity, critical micelle concentration, eye irritation, sorption onto hair, force reduction (%) for 20% extension and moisture retention effect comparing with the commercial standards. Also half-head tests of HGSQ-containing shampoo were carried out to compare the conditioning effects in shampoos.

  • PDF

Voltammetric Study of Anionic Surfactant-Modified Glassy Carbon Electrode for Bis(2,2'-Bipyridyl)Copper(II) in 200 mM NaBr

  • Ko, Young Chun
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.120-123
    • /
    • 2014
  • When a hydrophobic and hydrophilic environments of bis(2,2'-bipyridyl) copper(II) ($Cu(bpy)_2{^{2+}}$) are produced in the presence of anionic surfactant sodium dodecyl sulfate (SDS), cyclic voltammetry is used to investigate the microscopic environments which occurs at the glassy carbon electrode. In order to see the relation between ${\Delta}E_p$ and a critical micelle concentration (CMC), ${\Delta}E_p$ vs. -Log[SDS] for the redox couples are plotted. The concentration at the intersection of two lines is 2.57 mM SDS, and this concentration can be determined as the CMC (relative error: below 0.03%; 2.63 mM SDS by surface tensiometry).

Fabrication of Water-Soluble CuInS2 Quantum Dots by Hot-injection Method and Phase Transfer Strategy

  • Deng, Chong;Fu, Bowen;Wang, Yanlai;Yang, Lin
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850114.1-1850114.7
    • /
    • 2018
  • Here we report an optimized hot-injection method and a phase transfer strategy for the synthesis of water-soluble $CuInS_2$ QDs with desired properties. The structure and morphology studies demonstrate that the resulting QDs are $CuInS_2$ tetragonal phase with well-defined facets. It is also found that the crystal size gradually increases with the increase of reaction temperature, while the surface of QDs with pre- and post-phase transfer is functionalized with hydrophobic and hydrophilic ligands, respectively. Spectroscopy measurements reveal the size-dependent optical properties of $CuInS_2$ QDs, demonstrating the quantum confinement effect in this system.

Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions (다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • The present study aims to numerically investigate the behavior of liquid droplet driven by capillarity force imbalance on horizontal surfaces ranging from hydrophilic to hydrophobic, under various conditions. The droplet behavior has been simulated using an in-house solution code(PowerCFD), which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The detailed droplet behavior was obtained under various conditions for droplets with different initial shapes, contact angles and surface tension forces(or Bond number). The mechanism of droplet transport was examined using the numerical results on the droplet shapes.

Mechanical Strength and Thermal Conductivity of Pure/Opacified Silica Aerogels (순수/불투명화 실리카 에어로겔의 기계적 강도 및 열전도도)

  • 현상훈;이찬호;김동준;성대진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.969-978
    • /
    • 1997
  • The properties of microstructure, hydrophobicity/hydrophilicity, mechanical strength, and thermal conduction of pure/opacified silica aerogels synthesized by the sol-gel supercritical drying technique were investigated. The hydrophobic surface of opacified silica aerogels doped with carbon (0.13 g/cm3 density, 94% porosity, 580 m2/g specific surface area) transformed to hydrophilic surface after heat-treated above 30$0^{\circ}C$. The values of compressive modulus (1.85 MPa) and strength (0.5 MPa) of opacfied silica aerogels were about 20 times higher than those of pure silica aerogels. The mechanical properties of pure silica aerogels heat-treated at $700^{\circ}C$ were also considerably improved without changing their porosity and density. Particularly, compressive modulus and compressive strength of pure silica aerogels GPSed under 100$0^{\circ}C$ and 80 bar were improved 140 and 37 times, respectively. Thermal conductivities of pure/opacified silica aerogels measured at room temperature and 227$^{\circ}C$ were about 0.013 and 0.019 W/m.K, respectively, and were to be found very low value of 0.004 W/m.K below 10 torr pressure at room temperature.

  • PDF

Characteristic Studies of Plasma Treated unidirectional Hildegardia Populifolia Fabric

  • Prasad, C. Venkata;Lee, D.W.;Sudhakara, P.;Jagadeesh, D.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • This study deals with effect of plasma treatment on the properties of unidirectional ligno cellulosic fabric Hildegardia Populofolia (HDP) fabric. Thermal stability of the fabric was determined by differential scanning calorimetry (DSC) and Thermo gravimetric analysis (DSC). Morphological properties was analyzed by SEM analysis and found that the surface was rough upon plasma treatment which provides good interfacial adhesion with matrix during composite fabrication. Thermal stability and mechanical properties of the plasma treated fabric slightly increases compare to alkali and untreated fabric. It was observed that tensile properties of the fabric increases upon plasma treatment due to the formation of rough surface. SEM analysis indicates formation of rough surface on plasma treatment which helps in increasing the interfacial interaction between the matrix (hydrophobic) and fabric (hydrophilic).

Enhanced Blood Compatibility of PEO-Grafted and Sulfonated Polyurethanes (폴리에틸렌옥사이드 및 설폰산이 결합되어 혈액적합성이 개선된 개질 폴리우레탄)

  • Han, D.K.;Jeong, S.Y.;Ahn, K.D.;Kim, Y.H.;Kim, U.Y.;Cho, H.I.;Min, B.G.;Choi, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.5-6
    • /
    • 1989
  • Polyurethane surface was chemically modified to have different hydrophilic polyethyleneoxide(PEO)/hydrophobic dodecanediol(DDO) groups and negatively charged sulfonate group to investigate the effect to the antithrombogenicity. The hydrophilicity of the surface was significantly increased after PEO grafting or sulfonation. Lowering in-vitro platelet adhesion led to a prologation in the ex-vivo occlusion time. Especially, the sulfonated PU-PEO surface showed most enhanced blood compatibility due to the synergistic effects of PEO and $SO_3$ groups.

  • PDF

Effects of organic silicone additive material on physical and mechanical properties of mudstone

  • Chai, Zhaoyun;Kang, Tianhe;Chen, Weiyi
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • Mudstone is a very common rock that, when in contact with water, can exhibit considerable volume change and breakdown. This behavior of mudstone is frequently encountered in geotechnical engineering and has a considerable influence on infrastructure stability. This is particularly important in the present work, which focuses on mitigating the harmful properties of mudstone. The samples studied are of Permian Age mudstone from Shandong Province, China. Modification tests using organic silicone additive material were carried out. The mechanisms of physical properties modification of mudstone were comparatively studied using corresponding test methods, and the modification mechanism of organic silicone additive material acting on mudstone was analyzed. The following conclusions were drawn. The surface texture and characters of mudstone changed dramatically, surface character turns from hydrophilic to hydrophobic after organic silicone additive material modification. The changes in the surface character indicate a reduction in the water sensitivity of mudstone. After modification, the shape of porosity and fracture of mudstone changed unremarkable, and the total and free expansion ratios decreased obviously, whereas the strength increased markedly.

An Ultrafiltration Study for the Recycling of Synthetic Water-Based Cutting Oil (수용성 합성 절삭유의 재사용을 위한 한외여과 연구)

  • Kim, Jong-Pyo;Kim, Jae-Jin;Ryu, Jong-Hoon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.119-128
    • /
    • 2002
  • In the present study the membrane filtration characteristics of a commercially available synthetic water-based cutting oil through two kinds of ultrafiltration membranes (HF1-45-CM50 and HF1-43-CM100) with molecular weight cut-offs of 50,000 and 100,000, respectively, have been investigated in detail. Among these membranes, the hydrophilic one (HF1-45-CM50) was found to show a satisfactory result for both the permeate flux and the permeability of oil components, whereas the permeate flux obtained with the hydrophobic membrane (HF1-43-CM100) appears to be significantly low, indicating that synthetic cutting oil was easily wetted on the hydrophobic membrane surface and induced more membrane fouling. The effect of material characteristics of the membrane on the filtration characteristics was found to be much more significant compared with the mean pore size of the membrane. Backflushing by nitrogen gas was applied to reduce the formation of a gel layer and membrane fouling. With the hydrophilic membrane, the backflushing was found to increase the permeate flux, whereas the backflushing resulted in a decrease in flux for the hydrophobic membrane. The flux recovery was observed to be highest when the membranes fouled with waste synthetic cutting oil were immersed into a cleaning solution for more than 72 hours and then backflushed by nitrogen gas.

  • PDF