• Title/Summary/Keyword: Hydrophobic/hydrophilic surface

Search Result 310, Processing Time 0.03 seconds

Comparative Study on Ejection Phenomena of Droplets from EHD Jet by Hydrophobic Coating of Nozzle (노즐의 소수성 코팅에 의한 EHD 제트의 액적 토출 현상 비교 연구)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Ahn, Ki-Cheol;Keum, Hyun-Joon;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1742-1746
    • /
    • 2008
  • An EHD (Electro-Hydro-Dynamic) jet for electrostatic inkjet head shows advantages to print micro-size patterns using various inks because it can generate sub-micron droplets and can use highly viscous inks. Thus, many researchers in industrial fields are concerned about the EHD jet in these days. Since the basic principle of the EHD jet is to form a droplet from an apex of meniscus at the end of the nozzle, the ejection mechanism can be changed by the shape of the meniscus. The stable ejection of the droplet is greatly affected by the shape of the meniscus which is also influenced by surface characteristics of the nozzle, electric potential and ink properties. Experiments have been performed using the nozzles with hydrophilic and hydrophobic coatings in this study. The hydrophobic nozzle forms the stable droplets in wider range of the electric potential than the hydrophilic nozzle does.

  • PDF

Surface Properties of Epoxy Composites by Plasma Treatment (플라즈마처리에 따른 에폭시 복합재료의 표면특성)

  • 임경범;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.821-827
    • /
    • 2001
  • In this study performed to identify a degradation mechanism in macromolecular insulating material, the contact angel, surface potential decay, surface resistivity, and XPS analysis were compared after exposure of FRP laminate to plasma discharge. In the case of contact angle, the surface of specimen untreated showed weak hydrophobic property of 73。. However, the contact angle was decreased to 20。in the plasma-treated specimen. In the case of chemical changes arising form plasma treatment, carboxl radicals were generated mainly in the surface treated, which was rapidly changed to the hydrophilic one. In the corona potential decay study to determine the electrical changes of the surface, positive charges were rapidly decreased when compared with negative charges, leading to negative property in the surface of specimen not treated. However, in the case of the hydrophilic surface, lots of carboxl radicals acting as positive polarity were generated, resulting in positive surface. Owing to such positive surface, charges of negative polarity applied were rapidly decreased.

  • PDF

Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method (플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출)

  • Yeon, Simo;Park, Jeonho;Lee, Nukkyu;Park, Sukhee;Lee, Hyejin
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

Micro-particles in a Nanoliter Droplet Dispensed by a Pneumatic Dispensing System and Its Measurement (공압 디스펜싱 시스템을 이용한 나노리터 액적에 포함된 미세 입자의 분주 및 측정)

  • Lee, Sang-Min;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.913-919
    • /
    • 2012
  • This paper presents results for dispensing and measuring micro-particles using a pneumatic dispensing system. Particle-suspended liquid droplets were dispensed and analyzed quantitatively at various particle concentrations and applied pressures. By using a developed experimental setup, the number of particles and the particle volume ratio in sequentially dispensed droplets were measured. Hydrophilic and hydrophobic surfaces were tested to find a suitable surface for counting the number of particle. It was confirmed that the dispensed particles concentrated into the center of the droplet on the smooth CD surface after evaporation of liquid. As the applied positive pressure increased, the number of particles per droplet increased consistently and the volume fraction of particles remained constant.

A Characteristics Study on the Visualization and Heat Transfer of the Frost Formation Structure Variation by Control Plate Surface Temperature (표면온도 제어에 의한 착상층 구조변화의 가시화 및 열전달 특성 연구)

  • Kim Kyung-Chun;Ko Choon-Sik;Jeong Jae-Hong;Ko Young-Hwan;Shin Jong-min
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.55-58
    • /
    • 2002
  • To control the frost formation, a temperature variation of the cooling plate and characteristics on hydrophilic and hydrophobic surfaces was attempted. As a temperature variation of the cooling plate, being closely related to the frost layer density of frost layer is found to be affected by the melting process inside the frost layer during the heating period. At characteristics on surface, completely different structures of frost are appeared in the initial stage of frost formation due to the difference in surface conditions, while those effects are vanished with time. It is found that the frost thickness, density and heat flux characteristics are closely associated with the frost structure.

  • PDF

Effects of Oxyfluorination on Surface Graft Polymerization of Low Density Polyethylene Film and Its Surface Characteristics (함산소불소화가 저밀도 폴리에틸렌 표면의 그라프트 중합 및 그 표면 특성에 미치는 영향)

  • Yun, Seok-Min;Woo, Sang-Wook;Jeong, Eui-Gyung;Bai, Byong-Chol;Park, In-Jun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.343-348
    • /
    • 2010
  • The surface of low density polyethylene (LDPE) film was oxyfluorinated under different reaction conditions to introduce hydroperoxide groups and change surface characteristics. Hydroperoxide functional groups created by oxyfluorination were used as active sites for graft polymerization with hydrophobic monomer, acryl amide (AM), and hydrophilic monomer, methyl methacrylate (MMA) to carry out the second modification of the LDPE film surface. The surface properties of the OFPE films and grafted OFPE films were characterized by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, ATR-IR, contact angle measurement and DSC. From the results of DPPH method, the amount of hydroperoxide groups on the oxyfluorinated LDPE film continuously increased as the total pressure in the oxyfluorination and the partial pressure of fluorine gas increased. The water contact angle and surface free energy measurements showed that hydrophilic liquid (water) contact angle on LDPE film surface decreased with hydrophilic AM grafting and hydrophobic liquid (methylene diiodide) contact angle on LDPE film surface decreased with hydrophobic MMA grafting. These were attributed to AM or MMA monomer grafting and the wettability of LDPE filmsurface to hydrophilic and hydrophobic liquids were improved.

Experimental Study of Pool Boiling for Enhancing the Boiling Heat Transfer by Hydrophobic Dots on Silicon Surface (실리콘 표면 위에 소수성 점을 이용한 비등 열전달 증진에 관한 실험적 연구)

  • Jo, Hang-Jin;Kim, Hyung-Mo;Ahn, Ho-Seon;Kang, Soon-Ho;Kim, Joon-Won;Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.655-663
    • /
    • 2010
  • Wettability is important to enhance not only CHF but also nucleate boiling heat transfer, as shown by the results of different kinds of boiling experiments. In this regard, an excellent boiling performance (a high CHF and heat transfer performance) could be achieved in the case of pool boiling by some favorable surface modifications that can satisfy the optimized wettability condition. To determine the optimized boiling condition, we design special heaters to examine how two materials, which have different wettabilities (e.g., hydrophilic and hydrophobic materials), affect the boiling phenomena. The special heaters have hydrophobic dots on a hydrophilic surface. The contact angle of the hydrophobic surface is $120^{\circ}$ to water at the room temperature. The contact angle of the hydrophilic surface is $60^{\circ}$ at same conditions. Experiments involving micro hydrophobic dots and two types of milli hydrophobic dots are performed, and the results are compared with a reference surface.

Preparation and Thermal Performance Evaluation of Heat Storage paint with MPCM for Reducing Urban Heat Island Effect (도시 열섬현상 저감을 위한 MPCM 적용 축열도료 제조 및 열적성능 평가)

  • Jeong, Su-Gwang;Kang, Yujin;Wi, Seunghwan;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.17-24
    • /
    • 2015
  • The formation of heat islands causes high energy demand for space cooling and peak cooling loads in conditioned buildings. High-temperature fluctuations on a building roof may cause mechanical stress and increase surface deterioration. Thermal energy storage (TES) systems using microencapsulated phase-change materials (MPCMs) have been recognized as one of the most advanced energy technologies for enhancing the energy efficiency and sustainability of buildings. In this study, we prepared MPCM/paint composites for mitigating the heat island effect and reducing peak temperature. In addition, we carried out thermal and physical analysis of prepared MPCM composite samples by means of SEM, FTIR spectroscopy, DSC, and TGA. Further, we evaluated the dynamic heat transfer performance of heat-storage tiles painted with 10 g of heat-storage paint. From the obtained results, we deduced that MPCM/hydrophilic paint composites are more applicable to various fields, including the building sector, than MPCM/hydrophobic paint composites. On the basis of SEM and FTIR spectroscopy results, we concluded that materials with hydrophilic properties are more compatible with MPCMs than those with hydrophobic properties. In addition, DSC analysis results revealed that MPCM/hydrophilic paint composites have better compatibility, higher latent heat capacity, and better thermal properties than other composites. TGA results showed that hydrophilic-paint-based composites have higher thermal durability than hydrophobic-paint-based composites. Finally, a lot of MPCM-loaded heat-storage tiles showed lower peak temperatures at all measurement positions.

Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface (친수성/소수성 복합표면상에서 초기 구형 액적의 이송 메커니즘)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.871-884
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.