• Title/Summary/Keyword: Hydrophilic property

Search Result 191, Processing Time 0.027 seconds

Dyeing Properties and Scouring of Wool/Polyester Blend Fabrics Using Papain from Carica Papaya (파파인 가공한 양모/폴리에스터 혼방직물의 정련 및 염색성)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • This study provides the optimum papain treatment method and its effect on wool/polyester blend fabrics. The enzymatic treatment condition is optimized depending on its pH level, temperature, concentration of enzyme, treatment time and concentration of activators. The characteristics of samples treated with the papain are measured using weight loss, tensile strength, whiteness, WCA, dyeing property and surface micrographs. The results are described as follows: According to measuring weight loss, tensile strength and whiteness, a pH level of 7.5, $70^{\circ}C$, 10% papain(o.w.f.) and 60minutes of treatment time are optimized for papain treatment. L-cysteine and sodium sulfite are able to activate the papain. The optimum concentrations of them are 10mM and 50mM respectively. The WCA of fabrics is decreased since papain treatment makes wool/polyester blend fabrics more hydrophilic. Scouring with papain treatment improves whiteness and dyeing property of fabrics. The dyeing property of papain-treated fabrics is enhanced simply by a single step dyeing process using a basic dye. The surface of wool treated with papain in the presence of L-cysteine shows to be descaled. The surface of wool fibers in the presence of sodium sulfite, however, shows it is hydrolyzed evenly instead of being descaled. The surface of papain treated polyester fibers shows cracks and voids.

Physical properties of PU coated fabric with collagen (콜라겐을 첨가한 폴리우레탄 코팅직물의 물성)

  • 백천의;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • The demand for PU coated synthetic leather is increasing as a high fashion material. But it has some faults of water vapor permeability surface tacky property and static electricity. Therefore the purpose of this study was the produce of PU coated fabric added collagen with hydrophilic property and soft touch. In the PU coated fabric water vapor permeability water vaper absorption and frictional electronic voltage were investigated surface bending and compression properties were also examined by the use of KES-FB System. The followings were the results of this study. 1. There was no Cr in the collagen so that Cr was not treated in the collagen. 2. The surface and cross sectional layer of PU coated fabric with collagen were highly developed by micro porous structure. 3. The water vapor permeability of PU coated fabric was increased as collagen concentration increased. 4. The water vapor absorption of PU coated fabric was increased as collagen concentration increased. 5. The frictional electronic voltage of PU coated fabric was decreased in accordance with the increase of collagen concentration. Especially it effectively decreased by the use of only 5% collagen concentration. 6,. The bending and compression properties of PU coated fabric were increased in accordance with the increase of collagen concentration so that it became stiff. 7. The Value of MIU, SMD was decreased in accordance with the increase of collagen concentration so that the PU coated fabric became smooth.

  • PDF

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • Lee, Jun-Yeong;Han, Jae-Hyeon;Lee, Ji-Hye;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Gradual modification of Nanoimprint Patterns by Oxygen Plasma Treatment

  • Kim, Soohyun;Kim, Da Sol;Park, Dae Keun;Yun, Kum-Hee;Jeong, Mira;Lee, Jae Jong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.233-233
    • /
    • 2015
  • We report on a simple method for inducing physical and chemical property-gradient on nanoimprinted patterns by intensity-regulated plasma treatment under caved sample stage. As for the size gradient, a line pattern having a linewidth of 294.9 nm was etched to have gradually varying width from 277.4 nm to 147.9 nm. Modified pattern was proven to be adaptable to replica stamp for reversal patterning. To investigate the wettability gradient, imprinted nanopatterns were coated with fluoroalkylsilane to increase the hydrophobicity, and the surface was modified to have gradually varying wettability from hydrophobic to hydrophilic (contact angle was ${\sim}160^{\circ}$ to ${\sim}5^{\circ}$ on a single chip). This method is expected to be applicable to the selective adsorption of biological entities and hydrodynamic manipulation of liquid droplets for the pumpless microfluidics.

  • PDF

Study on the History of Printing Culture - The Center of Jin-Ju Areas - (인쇄문화사에 대한 고찰 - 진주지역을 중심으로)

  • ChuNamJang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 1995
  • Photosensitive resin of azide type is good for resolution and inner solvent, but it is really problem to development of practical use because fanctional groups of polymer has many hydrophilic radicals. By careful attention to this point, this study was investigated synthesis term, photo property and development property of composed photosensitive resin of azida type, it is to this effect. 1) H-NMR spectrum of compared DABCI showed amion redical by $\delta$6.0~6.1ppm to substitude for azide radical by amino radical by $\delta$8.9~9.45ppm, and FT-IR absorption spectra showed the absorption bends at 2100cm. 2)FT-IR absorption spectra of PHS1-DAB, PHS2-DAB, CMM-DAB and CHM-DAB showed azida radical pick to be lost at after irradiation by UV light. 3) According to exposuer change of PHS1-DAB, PHS2-DAB, CMM-DAB and CHM-DAB, absorption maximum value of UV spectrum change was 280nm. 4) to compared relative sensitivity of compared photosensitive resin, PHS2-DAB was the best and to compared insolubility rate of compared photosensitive resin, CMM-DAB was the lower. 5)Solubility if NaOH was the best by 1.0mol/$\ell$ and solubility of developing solution of ethanol to water was it in the ratio of 4 to 1.

  • PDF

Characteristics of Organic Compounds Removal and Microbe Attachment in Packed Bed Column Reactor Using Surface-modified Media (표면개질 담체를 이용한 충전탑 반응기에서 유기물 제거 및 미생물 부착 특성)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was accomplished using packed bed column reactors that contain nonsurface-modified polypropylene media and surface-modified media from hydrophobic surface property into hydrophilic property by ion beam irradiation. The objectives of this research was investigated the characteristics of organic compounds removal and microbe attachment from sewage of school cafeteria in these reactors. In 736.8 mg/L of the average inflow $COD_{Cr}$ concentration the reactors with and without surface modification showed 81.8% and 70.3% of average $COD_{Cr}$ removal efficiencies, respectively, which proves the $COD_{Cr}$ removal efficiency of surface-modified media reactor is higher than that of nonsurface-modified media reactor. After 90 days, there were maximum differences between modified system and non-modified system. In that time the maximum removal efficiency of $COD_{Cr}$ was 96.5% in modified system and was 85.2% in non-modified system that showed removal efficiency of surface-modified media system is 11.3% higher than that of nonsurface-modified media system. The average removal efficiency of SS was 80.4% for the surface modified system and 61.6% for the non-modified system under same condition. Also, the reactor of surface-modified media has advantage on microbe attachment and biofilm formation.

The Physical Property of PET Coolness Knitted Fabric for High Emotional Garment (고감성 의류용 PET 냉감 니트 소재의 물성)

  • Kim, Hyun Ah;Woo, Ji Yoon;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.114-123
    • /
    • 2014
  • This research investigated the physical properties of PET coolness filaments and their knitted fabrics including dyeing characteristics of these knitted fabrics according to the different dyeing time and temperature. The coolness filament(S) with non-circular cross-section and hydrophilic property was spun and another commercialized coolness(A) and regular(R) PET filaments were prepared for comparing coolness and another physical properties. Qmax of coolness knitted fabric made with S filament was higher than that of R-PET filament, and the maximum value of Qmax of S knitted fabric was shown at the dyeing conditions of temperature, $110^{\circ}C$ with 30 min. or 40min. It was shown that hand of S knitted fabric was a little harsh comparing to A and regular knit specimens, but shape retention and wearing performance of garment made with S knit specimen were estimated as good owing to high bending and shear rigidity. K/S of S knitted fabric was higher than those of regular PET and A knit specimens. Dyeing fastness of coolness knitted fabric showed between 4th and 5th grade.

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu;Wang, Zhi;Wang, Jixiao;Wang, Shichang
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.

An enhancement in wear property of UHMWPE used in joint prosthesis (인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구)

  • Kim, K.T.;Lee, C.W.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF