• Title/Summary/Keyword: Hydrophilic property

Search Result 191, Processing Time 0.022 seconds

Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation (전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석)

  • Jeon, Hyeon-Ae;Oh, Hwan-Hee;Kim, Young-Jin;Ko, Jae-Eok;Chung, Ho-Yun;Kang, Inn-Kyu;Kim, Won-Il;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

Development of Gradient Centrifugal Partition Chromatography Method and Its Application for the Isolation of 3,5-Dimethoxyphenanthrene-2,7-diol and Batatasin-I from Dioscorea opposita

  • Yoon, Kee-Dong;Yang, Min-Hye;Chin, Young-Won;Kim, Yoen-Jun;Kim, Hye-Ryung;Choi, Ki-Ri;Park, Ju-Hyun;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.144-150
    • /
    • 2009
  • Gradient centrifugal partition chromatography (GCPC) method was developed and applied to isolate 3,5-dimethoxyphenanthrene-2,7-diol (DMP) and batatasin-I (BA-I) from the dichloromethane soluble extract of Dioscorea opposita. In this method, the lower phase of n-hexane-methanol-water system (HMW, 10 : 9 : 1, v/v) was used as a mobile phase A (MpA) and water was used as a mobile phase B (MpB). This gradient CPC method is comparable to that of reversed-phase HPLC method in that the stationary upper-phase of HMW (10 : 9 : 1 v/v) works as if it were reversed-phase silica gel due to its hydrophobic property, while the lower phase (MpA) and water (MpB) functioned as hydrophilic mobile phases. The initial condition of the mobile phase was 20% MpA/80% MpB and maintained for 150 min to obtain DMP (1.2 mg), and then MpA was increased up to 50% to elute BA-I (1.7 mg). The purities of DMP and BA-I were 94.1% and 98.3% with the recovery yields of 83% and 86%, respectively. Similar results were obtained by linear-gradient CPC. The CPC peak fractions were identified by comparing their retention time to those of authentic samples of DMP and BA-I and their spectroscopic data ($^1$H NMR and $^{13}$C NMR) to those of literature values.

The physical properties of the cosmetic hydrogels affected by adding various celluloses (셀룰로오즈 첨가에 따른 미용용 하이드로겔의 물성 연구)

  • Byeon, Hong-Ju;Choi, Won-Seok;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.702-708
    • /
    • 2018
  • Hydrogels are natural polymer networks that can contain huge quantities of water and many cosmetical ingredients. Their hydrophilic functional groups creates a matrix, which allows high efficacy in delivering active ingredients into the skin. In industry, hydrating properties and strength of the hydrogels are of great interest in manufacturing hydrogel mask packs. We have used the cellulose in various forms such as powder, cotton fiber and cellulase treated cotton fiber to investigate the property changes of cellulose/hydrogel sheets. When 0.1% and 0.3% of cellulose powder were added to hydrogels, tensile strength of hydrogel sheets were decreased by 10% and 14% respectively. Vise versa, when 0.5 ~ 2 cm of cotton fibers were added, tensile strength of hydrogel sheets were significantly increased by about 20%. The hydrogels which contain cotton fibers also gave an excellent moisturizing effect. Especially cellolose/hydrogels containing cellulase-treated cotton fibers showed the best effect on retaining moisture content increasing upto 380% in comparison with the one containing untreated cotton as well as excellent dispersibility.

Estimation of Application of Artificially Deteriorated Silk by Ultraviolets for Conservation of Paintings on the Silk (견본 회화보존처리에 자외선 인공열화견의 적용성 평가)

  • Oh, Joon-Suk;Chun, Ji-Youn;Lim, In-Kyung
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 2011
  • A study was done to compare the properties of artificially deteriorated silk with ultraviolets for reinforcing of loss area of paintings on silk. Deteriorated surface of raw silk irradiated by long-wavelength ultraviolet(UV-A) than short-wavelength ultraviolet(UV-C) was similar to naturally aged raw silk. UV-A irradiation raw silk was slowly decreased in tensile tenacity and elongation and lowered in yellowness index than that of UV-C. Water content of UV-A irradiation raw silk than that of UV-C was higher. UV-A irradiation raw silk had no problem in dyeing and inpainting for conservation because of low yellowness index. UV-C irradiation raw silk was brittle, but UV-A irradiation raw silk was seemed to tough and similar to naturally aged raw silk. Korean painting conservator estimated that UV-A irradiation raw silk was more proper for reinforcing of loss area of paintings on silk than that of UV-C.

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.

Preliminary evaluation of new 68Ga-labeled cyclic RGD peptides by PET imaging

  • Shin, Un Chol;Jung, Ki-Hye;Lee, Ji Woong;Lee, Kyo Chul;Lee, Yong Jin;Park, Ji-Ae;Kim, Jung Young;Kang, Joo Hyun;An, Gwang Il;Ryu, Young Hoon;Choi, Jae Yong;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.118-122
    • /
    • 2016
  • Integrin ${\alpha}_v{\beta}_3$ plays an important role in the tumor metastases and angiogenesis. Arginine-glycine-aspartate (RGD) peptide motif binds to the integrin ${\alpha}_v{\beta}_3$. General $^{68}Ga$-labeled cyclic RGD peptides was rapidly eliminated from the circulatory system by renal excretion because of its hydrophilic property. The purpose of this study was to develop a novel $^{68}Ga$-labeled cyclic RGD peptides, which could acquire enhanced PET tumor images with improved pharmacokinetics by adopting biphenyl group between chelator and RGD peptides. $^{68}Ga$-DOTA-2P-c(RGDyK) was demonstrated a 12% higher lipophilicity level than $^{68}Ga$-DOTA-c(RGDyK) as a reference compound. In the animal PET, $^{68}Ga$-DOTA-2P-c(RGDyK) represented relatively lower blood-clearance, and an increased signal to noise ratio compared to $^{68}Ga$-DOTA-c(RGDyK). From these perspective, $^{68}Ga$-DOTA-2P-c(RGDyK) could be a good candidate for in integrin ${\alpha}_v{\beta}_3$-expressed tumor imaging.

Properties of TiO2 thin films fabricated with surfactant by a sol-gel method (Sol-gel 법에 의하여 제조된 계면활성제 첨가 TiO2 박막 특성)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Cho, Yong-Seok;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.267-271
    • /
    • 2010
  • Super hydrophilic and high transparent $TiO_2$ thin films were successfully fabricated by sol-gel method without an irradiation of UV light. In addition, surfactant Tween 80 was used for increasing the transmittance of the thin films. When the contents of Tween 80 in $TiO_2$ solution were 0.0, 1.0, 3.0, 5.0 wt%, the transmittance of $TiO_2$ thin films was ca. 74.31%, 74.25%, 79.69%, 81.99% at 550 nm wavelength, respectively. The contact angles of fabricated $TiO_2$ thin films with or without Tween 80 were from ca. $4.0^{\circ}$ to $4.5^{\circ}$. The $TiO_2$ thin films annealed over $400^{\circ}C$ showed anatase crystal structure and the photocatalytic property that decomposed methyl orange with UV irradiation. The surface morphologies, optical properties and contact angle of prepared thin films with different contents of Tween 80 were evaluated by field emission scanning electron microscope (FE-SEM), X-ray diffratometer (XRD), UV-Vis spectrophotometer and contact angle meter.

A Study on the Construction Specification and Quality Assurance Criteria in Clay Paver (점토바닥벽돌의 품질 및 시공기준 연구)

  • Park, Dae-Gun;Lee, Sang-Yum;Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.111-121
    • /
    • 2010
  • As the customer's interest for sidewalk block in the street or apartment complex is increasing, the materials of block which had been a concrete block exclusively are varied to clay paver, native rock and wood etc. Especially, the sales volume of clay paver which is environment-friendly and ergonomic is dramatically increasing every year with two digits growth rate, however, many problems like "Edge Cracking" "Freezing Breakage" "Bending Breakage" "Joint Gap" are happening frequently within a couple of hours after installation due to the durabilities. Because of the characteristics of Ceramic products, clay pavers are very easy to be broken when they are bumped against each other. In addition, they are relatively fragile by a freezing expansion breakage when exposed to water due to hydrophilic property as well as the intensity and absorptance of the products are varied with small difference from the production process such as production equipment and process control. Therefore, it costs a lot of money to repair the breakdown unless production and installation is carried out according to the strict criteria of the quality control. In this study, the symptoms of breakdown frequently happened in clay paver are classified by each type and finally the solution for this problem in the production of brick, installation and criteria of quality control through compressive strength and absorptance test is suggested.

A new Method of Stiction Reduction for MEMS Structures Using DDMS (DDMS를 이용한 MEMS 구조물의 새로운 점착방지 방법)

  • Kim, Bong-Hwan;Oh, Chang-Hoon;Chun, Kuk-Jin;Oh, Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.9-16
    • /
    • 2000
  • In order to achieve stiction-free polysilicon surfaces, we have suggested a new class of chemical coating precursors and confirmed their excellent characteristics. The strategy is to adopt dialkyldichlorosilanes (DDS, $R2SiCl_2$) instead of monoalkyltrichlorosilanes (MTS, $RSiCl_3$) such as octadecyltrichlorosilane (OTS) or 1H,1H2H,2H-perfluorodecyltrichlorosilane (FDTS). Dichlorodimethylsilane (DDMS, $(CH_3)2SiCl_2$) in this study is commercially available DDS with two short chains. DDMS in aprotic media spontaneously deposits on the hydrophilic polysilicon surface, which is completely changed to hydrophobic one. When polysilicon surface is exposed to DDMS solution at room temperature, anti-stiction property and hydrophobicity are clearly comparable to FDTS. DDMS is even superior to MTS in reliability and easy handling, which provides high yield. Since interactions among precursor molecules are reduced, conglomeration both in homogeneous solution and on surface can be effectively avoided. Even the cantilevers of 3 mm in length can be protected successfully from the stiction and the final quality of the modified surfaces is much less dependent on temperature. And no difference was found between the processes in ambient environment and in dry box. In addition, DDMS has advantages of remarkably reduced process time and low cost.

  • PDF

Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성)

  • Kim, Kun-Young;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byoung-Kuk;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.