• Title/Summary/Keyword: Hydrophilic antioxidants

Search Result 12, Processing Time 0.018 seconds

Polarity affects the antioxidant and antimicrobial activities of jellyfish (Acromitus hardenbergi) extracts

  • Khong, Nicholas M.H.;Foo, Su Chern;Yau, Sook Kun;Chan, Kim Wei;Yusoff, Fatimah Md.
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.189-201
    • /
    • 2022
  • Jellyfish is an emerging aquaculture species, farmed for Oriental cuisines and nutraceutical ingredients. This study aimed to examine antioxidative and antimicrobial potentials of various fractions of the jellyfish, Acromitus hardenbergi. The bell and oral arms of the jellyfish were sequentially extracted with petroleum ether (PE), dichloromethane (DCM), chloroform (CHCl3), methanol (MeOH), and water (H2O) to extract its bioactive in an increasing polarity gradient. Test fractions were assayed for antiradical activities using electron spin resonance spectrometry, β-carotene-linoleate model and Folin-Ciocalteu assay; and antimicrobial activity against 2 Gram-negative bacteria, 4 Gram-positive bacteria and 2 fungal species using the disc diffusion assay. All fractions were also subjected to Fourier Transform Infrared (FTIR) analysis to identify types of functional groups present. It was found that the hydrophilic extracts (H2O fractions) possessed the most effective radical scavenging activity (p < 0.05) while the lipophilic extracts (PE fractions) the most active antimicrobial activity, especially against Gram-positive bacteria (p < 0.05). Total oxidation substrates content was found to be highest in the PE fractions of jellyfish bell and oral arms (p < 0.05). FTIR data showed that the H2O and MeOH fractions contains similar functional groups including -OH, -C=O, -N-H and -S=O groups, while the PE, DCM, and CHCl3 fractions, the -CH3, -COOH groups. This study showed that A. hardenbergi contains antioxidants and antimicrobials, thereby supporting the traditional claim of the jellyfish as an anti-aging and health-promoting functional food. Bioassay-guided fractionation approach serves as a critical milestone for the strategic screening, purification, and elucidation of therapeutically significant actives from jellyfish.

Antioxidative Effects and Component Analysis of Extracts of the Rumex acetosa L. (수영 전초 추출물의 항산화 활성 평가 및 성분 분석)

  • Jeong, Yoo Min;Kim, Ho Jae;Lee, Su Hyun;Jang, Do Yun;Choi, Yae Chan;Min, Na Young;Gong, Bong Ju;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.391-402
    • /
    • 2014
  • In this study, the antioxidative effects and component analysis for the extracts of Rumex acetosa L. were investigated. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from dried R. acetosa L.. Free radical scavenging activities (1,1-diphenyl-2- picrylhydrazyl) size of, in the order of aglycone fraction > ethyl acetate fraction > 50% ethanol extract, aglycone fraction ($45.10{\mu}g/mL$) showed the highest radical scavenging activity. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system was also, in the order of ethyl acetate fraction> aglycone fraction> 50% ethyl acetate fraction, ethyl acetate fraction ($2.68{\mu}g/mL$) was shown a great antioxidant capacity. The total antioxidant capacity of the ethyl acetate fraction was found to be greater than L-ascorbic acid, known as a typical hydrophilic antioxidant ($6.88 {\mu}g/mL$). The cellular protective effects of R. acetosa L. extracts on the $^1O_2$-induced cellular damage of human erythrocytes were exhibited at all concentration-dependent ($1{\sim}25{\mu}g/mL$). Especially, aglycone fraction (${\tau}_{50}$, 104.80 min) in $25{\mu}g/mL$ showed the most protective effect among extracts. Components of the ethyl acetate fraction obtained from R. acetosa L. extracts were analyzed by TLC, HPLC chromatogram, LC/ESI-MS/MS. As a result, the ethyl acetate fraction contained several flavonoids, such as orientin, isoorientin, vitexin, isovitexin. These results indicate that the R. acetosa L. extracts can be used as antioxidants in biological systems, particularly skins exposed to UV radiation by quenching and/or scavenging $^1O_2$ and other ROS. Thus, the extracts of R. acetosa L. could be applicable to new anti-aging cosmeceutical ingredients.