DOI QR코드

DOI QR Code

Antioxidative Effects and Component Analysis of Extracts of the Rumex acetosa L.

수영 전초 추출물의 항산화 활성 평가 및 성분 분석

  • Jeong, Yoo Min (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Ho Jae (Hansung Science High School) ;
  • Lee, Su Hyun (Hansung Science High School) ;
  • Jang, Do Yun (Hansung Science High School) ;
  • Choi, Yae Chan (Hansung Science High School) ;
  • Min, Na Young (Hansung Science High School) ;
  • Gong, Bong Ju (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 정유민 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김호재 (한성과학고등학교) ;
  • 이수현 (한성과학고등학교) ;
  • 장도윤 (한성과학고등학교) ;
  • 최예찬 (한성과학고등학교) ;
  • 민나영 (한성과학고등학교) ;
  • 공봉주 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2014.11.05
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

In this study, the antioxidative effects and component analysis for the extracts of Rumex acetosa L. were investigated. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from dried R. acetosa L.. Free radical scavenging activities (1,1-diphenyl-2- picrylhydrazyl) size of, in the order of aglycone fraction > ethyl acetate fraction > 50% ethanol extract, aglycone fraction ($45.10{\mu}g/mL$) showed the highest radical scavenging activity. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system was also, in the order of ethyl acetate fraction> aglycone fraction> 50% ethyl acetate fraction, ethyl acetate fraction ($2.68{\mu}g/mL$) was shown a great antioxidant capacity. The total antioxidant capacity of the ethyl acetate fraction was found to be greater than L-ascorbic acid, known as a typical hydrophilic antioxidant ($6.88 {\mu}g/mL$). The cellular protective effects of R. acetosa L. extracts on the $^1O_2$-induced cellular damage of human erythrocytes were exhibited at all concentration-dependent ($1{\sim}25{\mu}g/mL$). Especially, aglycone fraction (${\tau}_{50}$, 104.80 min) in $25{\mu}g/mL$ showed the most protective effect among extracts. Components of the ethyl acetate fraction obtained from R. acetosa L. extracts were analyzed by TLC, HPLC chromatogram, LC/ESI-MS/MS. As a result, the ethyl acetate fraction contained several flavonoids, such as orientin, isoorientin, vitexin, isovitexin. These results indicate that the R. acetosa L. extracts can be used as antioxidants in biological systems, particularly skins exposed to UV radiation by quenching and/or scavenging $^1O_2$ and other ROS. Thus, the extracts of R. acetosa L. could be applicable to new anti-aging cosmeceutical ingredients.

본 연구에서는 수영 전초 추출물에 대하여 항산화 활성 평가와 성분 분석을 실시하였다. 실험에는 수영전초의 50% 에탄올 추출물, 에틸아세테이트 분획, 아글리콘(aglycone) 분획을 사용하였다. 자유라디칼 소거활성(1,1-diphenyl-2-picrylhydrazyl, DPPH, $FSC_{50}$)의 크기는 아글리콘 분획 > 에틸아세테이트 분획 > 50% 에탄올 추출물 순으로, 아글리콘 분획($45.10{\mu}g/mL$)이 가장 큰 라디칼 소거활성을 나타냈다. $Fe^{3+}-EDTA/H_2O_2$계를 이용한 활성산소 소거활성(총항산화능, $OSC_{50}$)도 에틸아세테이트 분획 > 아글리콘 분획 > 50% 에탄올 추출물 순으로 에틸아세테이트 분획($2.68{\mu}g/mL$)에서 가장 큰 항산화능을 나타내었다. 에틸아세테이트 분획의 총항산화능은 수용성 항산화제로 알려진 L-ascorbic acid ($6.88{\mu}g/mL$)보다 큰 것으로 나타났다. 활성산소인 $^1O_2$으로 유도된 사람 세포 손상에 있어서, 수영 전초 추출물은 모두 농도 의존적($1{\sim}25{\mu}g/mL$)으로 세포보호 활성을 나타내었다. 특히 아글리콘 분획(${\tau}_{50}$, 104.80 min)은 가장 큰 세포 보호 활성을 나타내었다. TLC, HPLC, LC/ESI-MS/MS을 이용하여 수영 전초 추출물 중 에틸아세테이트 분획에 대하여 성분 분석을 실시하였다. 그 결과, 에틸아세테이트 분획은 orientin, isoorientin, vitexin, isovitexin 등의 플라보노이드가 함유되어 있음을 확인하였다. 이상의 결과들은 수영의 전초 추출물이 $^1O_2$을 비롯한 활성산소종을 소광 또는 소거함으로써 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 가리키며 항노화 기능성 화장품 원료로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. L. Packer, Utraviolet radiation (UVA, UVB) and skin antioxidants, In: Free radical damage and its control, eds. C. A. Rice-Evans and R. H. Burdon, Elsevier Science B.V., 239 (1994).
  2. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: Its prevention and therapy, In: Antioxidants in disease mechanisms and therapy, eds. H. Sies, Advances Pharmacology, (1997).
  3. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(1), 75 (1997).
  4. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  5. S. N. Park, Effect of natural products on skin cells: action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  6. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, Singlet oxygen production by human eosinophils, J. Biol. Chem., 263, 9692 (1988).
  7. S. N, Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).
  8. Y. J. Ahn, B. R. Won, M. K Kang, J. H. Kim, and S. N. Park, Antioxidant activity and component analysis of fermented Lavendula angustifolia extracts, J. Soc. Cosmet. Scientists Korea, 35(2), 125 (2009).
  9. S. N, Park, Effects of flavonoids and other phenolic compounds on reactive oxygen-mediated biochemical reactions, Ph.D. Thesis, Seoul National University (1989).
  10. S. B. Han, S. S. Kwon, B. J. Gong, K. J. Kim, and S. N. Park, Antioxidative Effect and Tyrosinase Inhibitory Activity for the Unripened Fruit by Rubus coreanus Miquel Extracts, J. Soc. Cosmet. Scientists Korea, 39(4), 295 (2013). https://doi.org/10.15230/SCSK.2013.39.4.295
  11. R. S. Sohala and W. C. Orrb, The redox stress hypothesis of aging, Free Radic. Biol. Med., 52(3), 539 (2012). https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  12. L. C. Magdalena, and Y. A. Tak, Reactive oxygen species, cellular redox systems, and apoptosis, Free Radic. Biol. Med., 48, 749 (2010). https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  13. V. Afonso, R. Champy, D. Mitrovic, P. l. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases : Role in joint diseases, Joint Bone Spine, 74, 324 (2007). https://doi.org/10.1016/j.jbspin.2007.02.002
  14. M. J. Davies, Reactive Oxygen Species, Metalloproteinases, and Plaque Stability, Journal of the American Heart Association, 23, 2382 (1998).
  15. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  16. S. B. Berman and T. G. Hastings, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem., 69(3), 1185 (1997).
  17. J. J. Thiele, C. O. Barland, R. Ghadially, and P. M. Elias, Permeability and antioxidant Barriers in aged epidermis, Skin Aging (B. A. Gilchrest, J. Krutman, eds), Springer-Verlag Berlin Heidelberg, Germany, 65 (2006).
  18. J. Y. Bae, Y. S. Rhee, S. Y. Han, E. J. Jeong, M. K. Lee, J. Y. Kong, D. H. Lee, K. J. Cho, H. S. Lee, and M. J. Ahn, A Comparison between Water and Ethanol Extracts of Rumex acetosa for Protective Effects on Gastric Ulcers in Mice, Biomol. Ther., 20(4), 425 (2012). https://doi.org/10.4062/biomolther.2012.20.4.425
  19. C. B. Lee, Coloured Flora of Korea I. 246, Hyangmoonsa, Seoul (2003).
  20. N. J. Lee, J. H. Choi, B. S. Koo, S. Y. Ryu, Y. H. Han, S. I. Lee, and D. U. Lee, Antimutagenicity and cytotoxicity of the constituents from the aerial parts of Rumex acetosa, Biol. Pharm. Bull., 28, 2158 (2005). https://doi.org/10.1248/bpb.28.2158
  21. K. Gescher, A. Hensel, W. Hafezi, A. Derksen, and J. Kuhn, Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1, Antiviral Res., 89, 9 (2011). https://doi.org/10.1016/j.antiviral.2010.10.007
  22. M. Wegiera, U. Kosikowska, A. Malm, and H. D. Smolarz, Antimicrobial activity of the extracts from fruits of Rumex species, Cent. Eur. J. Biol., 6, 1036 (2011). https://doi.org/10.2478/s11535-011-0066-0
  23. M. Aritomi, I. Kiyota, and T. Mazaki, Flavonoid constituents in leaves of Rumex acetosa, Chem. Pharm. Bull., 13, 1470 (1965). https://doi.org/10.1248/cpb.13.1470
  24. T. Kato and Y. Morita, Antraquinone components in Rumex acetosa L., Shoyakugaku Zasshi, 41, 67 (1987).
  25. T. Kato, Y. Morita, C-Glycosylflavones with acetyl substitution from Rumex acetosa L., Chem. Pharm. Bull., 38, 2277 (1990).
  26. J. W. Fairbairn and F. J. El-muhtadi, Chemotaxonomy of anthraquinones in Rumex, Phytochemistry, 11, 263 (1972). https://doi.org/10.1016/S0031-9422(00)90001-3
  27. N. J. Lee, K. H. Lee, D. U. Lee, S. S. Park, Y. H. Han, and S. Y. Ryu, Antimutagenic activity and cytotoxicity of the whole plant of Rumex acetosa, Kor. J. Pharmacogn., 32(4), 338 (2001).
  28. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).