• 제목/요약/키워드: Hydrophilic Membrane

검색결과 256건 처리시간 0.022초

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • 제1권2호
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process

  • Mansouri, Sina;Khalili, Soodabeh;Peyravi, Majid;Jahanshahi, Mohsen;Darabi, Rezvaneh Ramezani;Ardeshiri, Fatemeh;Rad, Ali Shokuhi
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2256-2268
    • /
    • 2018
  • Hydrophilic and hydrophobic polyethersulfone (PES)-zinc oxide (ZnO) sublayers were prepared by loading of ZnO nanoparticles into PES matrix. Both porosity and hydrophilicity of the hydrophilic sublayer were increased upon addition of hydrophilic ZnO, while these were decreased for the hydrophobic sublayer. In addition, the results demonstrated that the hydrophilic membrane exhibited smaller structural parameter (S value or S parameter or S), which is beneficial for improving pure water permeability and decreasing mass transfer resistance. In contrast, a higher S parameter was obtained for the hydrophobic membrane. With a 2 M NaCl as DS and DI water as FS, the pure water flux of hydrophilic TFN0.5 membrane was increased from $21.02L/m^2h$ to $30.06L/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $14.98L/m^2h$, while the salt flux of hydrophilic membrane increased from $10.12g/m^2h$ to $17.31g/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $3.12g/m^2h$. The increment in pure water permeability can be ascribed to reduction in S parameter, which resulted in reduced internal concentration polarization (ICP). The current study provides a feasible and low cost procedure to decrease the ICP in FO processes.

막증류 담수화를 위한 친수성/소수성 이중 표면 코팅 (Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination)

  • 김혜원;이승헌;정성필;변지혜
    • 한국물환경학회지
    • /
    • 제38권3호
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향 (Effect of Membrane Materials on Membrane Fouling and Membrane Washing)

  • 심현술;정철우;손희종;손인식
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.500-505
    • /
    • 2007
  • 본 연구에서는 막의 재질에 따른 막오염 특성과 물리 화학적 세척에 대한 영향을 살펴보았다. 막의 재질에 대한 막오염 특성을 조사하기 위하여 정적흡착실험과 일정 압력하에서 흡착실험을 병행하여 실험을 수행하였다. UF 막의 재질특성에 따른 정적흡착 실험값을 회귀분석한 결과, 소수성과 친수성 유기물질의 시간에 따른 흡착 특성은 소수성 재질의 막이 친수성 재질의 막보다 빠른 흡착특성을 보였다. 막의 재질에 따른 유기물 성상별 흡착실험 결과, 막의 재질에 상관없이 소수성 유기물질의 흡착율이 친수성 유기물질보다 더 빠른 흡착율을 보였다. 또한 막의 표면과 공극속에서 발생하는 유기물의 흡착 특성을 살펴보기 위하여 일정한 압력하에서 시간에 따른 흡착 특성을 살펴본 결과 정적흡착실험 결과와 유사하게 친수성 재질의 막보다 소수성 재질의 막에서 더 빠른 흡착율을 보이고 있다. 막에 재질에 따른 흡착실험 후 투과 flux 변화와 flux 회복율에 대한 실험결과, 친수성 재질의 막의 경우 소수성 재질의 막에 비하여 투과 flux 감소율은 낮게 나타났으며 물리 화학적 세척의 영향에서도 물리적인 세척후 효과적인 회복율을 나타내었으며 화학적인 세척의 영향은 거의 없었다. 친수성 재질의 막의 경우 막자체의 고유저항(Rm)이 크게 나타나고 있으며 소수성 재질의 막의 경우 케이크에 의한 저항과 물리 화학적 세척에도 회복되지 않는 비가역적 저항이 크게 나타나고 있다. 따라서 친수성 재질의 막의 경우 막표면 오염이 주가 되며 소수성 재질의 막의 경우 막표면 오염과 공극 오염이 동시에 발생함을 알 수 있었다.

Ultrafiltration of Oily Wastewater with Surface Pretreated Membranes

  • Kim, Kyu-Jin;Fane, Antony G.
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.43-49
    • /
    • 1999
  • Separation of soluble oil was investigated during filtration of cutting oil emulsion using various commercial ultrafiltration membranes. The surface properties of membranes used were hydrophilic hydrophobic and modified surfaces by various surfactant pretreatments. Conditions varied include stirring speed transmeembrane pressure membrane type and surfactant type for pretreatment. The results give some indication of mechanisms occurring at the membrane surface. Surfactant pretreatments significantly improved water flux and UF flux of hydrophilic regenerated cellulose(up to 2.4x for YM100) and hydrophobic polysulfone (up to 2.2x for PTHK) membranes depending on surfactant type and operating conditions. The UF flux enhancement was attributed to membrane swelling and reduction of interfacial surface tension between oil droplets and membrane surface. unexpectedly the hydrophilic membranes revealed greater flux enhancement than the hydrophobic membranes. The results also showed a greater improvement in UF flux at lower operating pressure.

  • PDF

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

친수성 막을 통한 수분 전달 특성 연구 (Experimental Evaluation of Hydrophilic Membrane Humidifier with Isolation of Heat Transfer Effect)

  • 탁현우;김경택;한재영;임석연;유상석
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.815-821
    • /
    • 2013
  • 고분자 전해질 연료전지(이하 PEMFC) 시스템의 효율과 수명은 유입되는 공기의 습도에 직접적인 영향을 받는다. 그러므로 공기는 정상 운전조건에서 적절한 습도를 유지시켜 주어야 한다. 하지만 가습 장치의 특성들에 대해서는 연구가 부족한 상태이다. 본 연구에서는 정상상태에서 다양한 입구조건에 따른 막 가습기의 수분전달 특성을 알아보기 위해 실험을 수행하였다. 실험에 이용할 평판형 막 가습기를 제작하였으며, 실험에 적합한 환경을 조성하였다. 우선 일정한 온도 조건하에서 막을 통과하는 수분 전달 능력을 실험하였고 이후 다양한 입구 조건에 따른 수분 전달 특성을 알아보았다. 본 실험에서 사용된 입구조건의 변수는 건공기와 습공기의 유량, 작동온도, 작동압력 및 유동배열이 있으며 각각의 입구 조건이 가습기의 성능에 미치는 영향을 논의하였다.

PTFE 막의 표면 개질 방법 (Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes)

  • 장준규;윤채원;박호범
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 본 총설은 소수성 불소수지계 분리막의 표면 개질에 대한 개론으로 다양한 표면 개질 방법 및 그 연구 결과를 중점적으로 서술하였다. PTFE로 대표되는 불소수지계 고분자 분리막은 막 증류, 유수 분리, 기체 분리를 포함한 다양한 막 분리 공정에서 사용되어왔다. PTFE 막은 내화학성, 내열성, 높은 기계적 강도와 같은 뛰어난 물성에도 불구하고 소수성 표면 특성으로 인해 기술 적용의 확장에 제한적이다. 친수성 향상을 위해 습식 화학법, 친수성 고분자 코팅, 플라즈마 처리, 조사, 원자층 증착과 같은 다양한 PTFE 표면 개질 방법을 이용하며 이를 통해 불소수지계 분리막의 응용분야가 확장될 수 있다.