Browse > Article
http://dx.doi.org/10.1007/s11814-018-0086-9

Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process  

Mansouri, Sina (School of Chemical Engineering, Kavosh Institute of Higher Education)
Khalili, Soodabeh (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology)
Peyravi, Majid (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology)
Jahanshahi, Mohsen (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology)
Darabi, Rezvaneh Ramezani (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology)
Ardeshiri, Fatemeh (Institute of Nanoscience and Nanotechnology, University of Kashan)
Rad, Ali Shokuhi (Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2256-2268 More about this Journal
Abstract
Hydrophilic and hydrophobic polyethersulfone (PES)-zinc oxide (ZnO) sublayers were prepared by loading of ZnO nanoparticles into PES matrix. Both porosity and hydrophilicity of the hydrophilic sublayer were increased upon addition of hydrophilic ZnO, while these were decreased for the hydrophobic sublayer. In addition, the results demonstrated that the hydrophilic membrane exhibited smaller structural parameter (S value or S parameter or S), which is beneficial for improving pure water permeability and decreasing mass transfer resistance. In contrast, a higher S parameter was obtained for the hydrophobic membrane. With a 2 M NaCl as DS and DI water as FS, the pure water flux of hydrophilic TFN0.5 membrane was increased from $21.02L/m^2h$ to $30.06L/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $14.98L/m^2h$, while the salt flux of hydrophilic membrane increased from $10.12g/m^2h$ to $17.31g/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $3.12g/m^2h$. The increment in pure water permeability can be ascribed to reduction in S parameter, which resulted in reduced internal concentration polarization (ICP). The current study provides a feasible and low cost procedure to decrease the ICP in FO processes.
Keywords
ZnO Nanoparticles; Hydrophilic and Hydrophobic Sublayer; Thin Film Composite Membrane; S Parameter; Forward Osmosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Khaled, R. Sui, P. A. Charpentier and A. S. Rizkalla, Langmuir, 23, 3988 (2007).   DOI
2 J. R. McCutcheon and M. Elimelech, J. Membr. Sci., 318, 458 (2008).   DOI
3 A. Saffar, P. J. Carreau, A. Ajji and M. R. Kamal, J. Membr. Sci., 462, 50 (2014).   DOI
4 M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi and A. Shockravi, Micropor. Mesopor. Mater., 160, 114 (2012).   DOI
5 E. L. Tian, H. Zhou, Y. W. Ren, X. Z. Wang and Sh. W. Xiong, Desalination, 347, 207 (2014).   DOI
6 M. Peyravi, A. Rahimpour and M. Jahanshahi, J. Membr. Sci., 473, 72 (2015).   DOI
7 D. Emadzadeh, W. J. Lau and A. F. Ismail, Desalination, 330, 90 (2013).   DOI
8 N. Misdan, W. J. Lau, A. F. Ismail and T. Matsuura, Desalination, 329, 9 (2013).   DOI
9 Sh. Zhu, S. Zhao, Zh. Wang, X. Tian, M. Shi, J. Wang and Sh. Wang, J. Membr. Sci., 493, 263 (2015).   DOI
10 Sh. Xia, L. Yao, Y. Zhao, N. Li and Y. Zheng, Chem. Eng. J., 280, 720 (2015).   DOI
11 H. Hoseinpour, M. Jahanshahi, M. Peyravi and A. Nozad, J. Ind. Eng. Chem., 46, 244 (2017).   DOI
12 J. Wei, Ch. Qiu, Ch. Y. Tang, R. Wang and A. G. Fane, J. Membr. Sci., 372, 292 (2011).   DOI
13 J. Heikkinen, H. Kyllonen, E. Jarvela, A. Gronroos and Ch. Y. Tang, J. Membr. Sci., 528, 147 (2017).   DOI
14 F. Kong, H. Yang, Y. Wu, X. Wang and Y. F. Xie, J. Membr. Sci., 476, 410 (2015).   DOI
15 D. L. Shaffer, J. R. Werber, H. Jaramillo, Sh. Lin and M. Elimelech, Desalination, 356, 271 (2015).   DOI
16 O. Akin and F. Temelli, Desalination, 278, 387 (2011).   DOI
17 D. Emadzadeh, W. J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura and A. F. Ismail, Chem. Eng. J., 281, 243 (2015).   DOI
18 D. Emadzadeh, W. J. Lau, T. Matsuura, A. F. Ismail and M. Rahbari-Sisakht, J. Membr. Sci., 449, 74 (2014).   DOI
19 X. Liu and H. Y. Ng, J. Membr. Sci., 469, 112 (2014).   DOI
20 W. Kuang, Zh. Liu, G. Kang, D. Liu, M. Zhou and Y. Cao, J. Appl. Poly. Sci., 133, 1 (2016).
21 M. Khajouei, M. Peyravi and M. Jahanshahi, J. Membr. Sci. Res., 3, 2 (2017).
22 X. Liu, S. L. Ong and H. Y. Ng, J. Membr. Sci., 511, 40 (2016).   DOI
23 F. Esfandian, M. Peyravi, A. A. Ghoreyshi, M. Jahanshahi and A. Sh. Rad, Arab. J. Chem (2017).
24 M. Peyravi, M. Jahanshahi, A. Rahimpour, A. Javadi and S. Hajavi, Chem. Eng. J., 241, 155 (2014).   DOI
25 M. Peyravi, A. Rahimpour and M. Jahanshahi, J. Membr. Sci., 423, 225 (2012).
26 S. Morales-Torres, C. M. Esteves, J. L. Figueiredo and A. M. Silva, J. Membr. Sci., 520, 326 (2016).   DOI
27 D. Li, Y. Yan and H. Wang, Prog. Poly. Sci., 61, 104 (2016).   DOI
28 A. Zirehpour, A. Rahimpour and M. Ulbricht, J. Membr. Sci., 531, 59 (2017).   DOI
29 Y. Cui, X. Y. Liu, T. Sh. Chung, M. Weber, C. Staudt and Ch. Maletzko, Water Res., 91, 104 (2016).   DOI
30 Sh. Lin, J. Membr. Sci., 514, 176 (2016).   DOI
31 Z. Dabaghian and A. Rahimpour, Chem. Eng. Res. Design, 104, 647 (2015).   DOI
32 A. H. Hawari, N. Kamal and A. Altaee, Desalination, 398, 98 (2016).   DOI
33 X. Liu and H. Y. Ng, J. Membr. Sci., 469, 112 (2014).   DOI
34 M. Park, J. J. Lee, S. Lee and J. H. Kim, J. Membr. Sci., 375, 241 (2011).   DOI
35 Ch. Boo, S. Lee, M. Elimelech, Zh. Meng and S. Hong, J. Membr. Sci., 390, 277 (2012).
36 Sh. Chou, R. Wang, L. Shi, Q. She, Ch. Tang and A. G. Fane, J. Membr. Sci., 389, 25 (2012).   DOI
37 Q. Liu, J. Li, Zh. Zhou, J. Xie and J. Y. Lee, Scientific Reports, 6, 1 (2016).   DOI
38 Zh. Liu, H. Yu, G. Kang, X. Jie, Y. Jin and Y. Cao, J. Membr. Sci., 497, 485 (2016).   DOI
39 P. Xiao, L. D. Nghiem, Y. Yin, X. Li, M. Zhang, G. Chen, J. Song and T. He, J. Membr. Sci., 481, 106 (2015).   DOI
40 Q. She, X. Jin and Ch. Y. Tang, J. Membr. Sci., 401, 262 (2012).
41 Ch. Suh and S. Lee, J. Membr. Sci., 427, 365 (2013).   DOI
42 M. F. Jimenez-Solomon, P. Gorgojo, M. Munoz-Ibanez and A. G. Livingston, J. Membr. Sci., 448, 102 (2013).   DOI
43 N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao and Ch. Y. Tang, J. Membr. Sci., 441, 54 (2013).   DOI
44 J. Yin and B. Deng, J. Membr. Sci., 479, 256 (2015).   DOI
45 M. Abbasian, N. K. Aali and S. E. Shoja, J. Macromol. Sci., 50, 966 (2013).   DOI
46 M. Ghanbari, D. Emadzadeh, W. J. Lau, H. Riazi, D. Almasi and A. F. Ismail, Desalination, 377, 152 (2016).   DOI
47 M. Tian, Y. N. Wang, R. Wang and A. G. Fane, Desalination, 401, 142 (2017).   DOI
48 X. Feng, H. Guo, K. Patel, H. Zhou and X. Lou, Chem. Eng. J., 244, 327 (2014).   DOI
49 P. Liu and T. Wang, Cur. Ap. Phy., 8, 66 (2008).   DOI
50 R. R. Darabi, M. Peyravi and M. Jahanshahi and A. A. Q. Amiri, Korean J. Chem. Eng., 34, 2311 (2017).   DOI
51 M. I. Baig, P. G. Ingole, W. K. Choi, J. d. Jeon, B. Jang, J. H. Moon and H. K. Lee, Chem. Eng. J., 308, 27 (2017).   DOI
52 M. Amini, M. Jahanshahi and A. Rahimpour, J. Membr. Sci., 435, 233 (2013).   DOI
53 A. Anzlovar, Z. C. Orel and M. Zigon, Eur. Polym. J., 46, 1216 (2010).   DOI
54 N. Shafaei, M. Peyravi and M. Jahanshahi, Polym. Adv. Technol., 27, 1325 (2016).
55 Sh. Ma, L. Shi, X. Feng, W. Yu and B. Lu, J. Shan. Uni., 12, 278 (2008).   DOI