• Title/Summary/Keyword: Hydrolysis rate

Search Result 713, Processing Time 0.02 seconds

Kinetic Studies on the Mechanism of Hydrolysis of 4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide (4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide의 가수분해 반응메카니즘에 관한 반응속도론적 연구)

  • Kim, Tae Rin;Chung, Dong In;Pyun, Sang Yong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.733-740
    • /
    • 1996
  • The rate constants for the hydrolysis of 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide(AMQD) were determined by ultraviolet visible spectrophotometer in water at $25^{\circ}C.$ The rate equation which could be applied over wide pH ranges were obtained. On the basis of pH-rate profile, Bronsted plot, hydrolysis product analysis, general base catalysis and substituent effect, the plausible hydrolysis mechanism was proposed: Below pH 3.00, the hydrolysis reaction was proceeded by the attack of water to 4'-position of quinonoid after protonation at nitrogen of acridinyl and between pH 3.00 and 9.00, the addition of water and hydroxide occurred competitively. However, above pH 9.00, the rate constants were dependent upon only the concentration of hydroxide ion.

  • PDF

Hydrolysis Mechanism of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride Derivatives (N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride 유도체의 가수분해 반응 메카니즘)

  • Kwon, Ki-Sung;Song, Yun-Yi
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.650-656
    • /
    • 1995
  • Rate Constants of hydrolysis of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl chlorides were determined by UV spectrophotometry in 50% (v/v) aqueous methanol at 25$^{\circ}C.$ On the basis of rate equation, substituent effect, solvent effect, salt effect, thermodynamic parameters and hydrolysis product analysis, it may be concluded that the hydrolysis of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl chlorides proceed through $S_N1$ mechanism via azocarbonium ion intermediate below pH 9.0, while aebove pH 10.0 the hydrolysis proceeds through nucleophilic addition-elimination ($Ad_{N-E}$) mechanism.

  • PDF

Cinnamic Acid Derivatives IV, The Kinetics and Mechanism of the Hydrolysis of Cinnamylidene aniline Derivatives (신남산 유도체 Ⅳ, Cinnamylidene anilin 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구)

  • Lee, Gi-Chang;Park, Su-In;Hwang, Yong-Hyeon;Lee, Gwang-Il;Choe, Bong-Jong;Jeong, Deok-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • The kinetic of hydrolysis for cinnamylidene aniline derivatives has been investigated by ultraviolet spectrophotometry in 20% (v/v) dioxane - $H_2O$ at $25^{\circ}C$. A rate equation which can be applied over wide pH range was obtained. The substituent effects on cinnamylidene aniline derivatives were studied and the hydrolysis was facilitated by electron attracting group. Final products of the hydrolysis were cinnamaldehyde and aniline. From the rate equation, substituent effect and final products, the hydrolysis of cinnamylidene aniline derivatives was initiated by the neutral molecule of $H_2O$ which does not dissociate at below pH 9.0${\sim}$12.0, but proceeded by the hydrogen ion at above pH 5.0${\sim}$9.0.

Enzymatic hydrolysis and micro-structure of ozone treated wood meal (오존 처리에 의한 목재 세포벽의 미세구조변화와 효소가수분해)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • Pine (Pinus densiflora) and aspen (Populus euramericana) wood meals were treated with ozone at various time schedule in acidic condition. The lignin contents and surface area of the ozone treated wood meals were determined and the enzymatic hydrolysis rate of ozonated wood meals was evaluated. The feasibility of enzymatic hydrolysis of the ozone treated wood meal was obviously influenced with the degree of delignification. After ozone treatment of wood meal for 10min, total pore volume were slightly increased in the surface of wood meal. When wood meals were treated with ozone longer than 10min, few change in the pore volume was observed. However, the area of over $50{\AA}$ of pore size is increased with ozonation time. As a conclusion, the rate of enzymatic hydrolysis of wood is more effective with the pore size distribution than the total pore volume.

Uniqueness of Microbial Cutinases in Hydrolysis of p-Nitrophenyl Esters

  • KIM, YANG-HOON;JEEWON LEE;SEUNG-HYEON MOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • Using fungal (Fusarium solani f. pisi) and bacterial (Pseudomonas mendocina) cutinases, the initial hydrolysis rate of p-nitrophenyl esters was systematically estimated for a wide range of enzyme and substrate concentrations using a 96-well microplate reader. Both cutinases exhibited a high substrate specificity; i.e. a high hydrolytic activity on p-nitrophenyl butyrate (PNB), yet extremely low activity on p-nitrophenyl palmitate (PNP). When compared to the hydrolysis of PNB and PNP by other hydrolases [lipases and esterases derived from different microbial sources, such as bacteria (Pseudomonas cepacia, Psedomonas furescens, Baciilus stearothermophilus), molds (Aspeillus niger, mucor miehei), and yeasts (Candida rugosa, Candida cylindracea)], the above substrate specificity would seem to be a unique characteristic of cutinases. Secondly, the hydrolytic activity of the cutinases on PNB appeared much faster than that of the other hydrolytic enzymes mentioned above. Furthermore, the current study proved that even when the cutinases were mixed with large amounts of other hydrolases (lipases or esterases), the Initial hydrolysis rate of PNB was determined only by the cutinase concentration for each PNB concentration. This property of cutinase activity would seem to result from a higher accessibility to the substrate PNB, compared with the other hydrolytic enzymes. Accordingly, these distinct properties of cutinases may be very useful in the rapid and easy isolation of various natural cutinases with different microbial sources, each of which may provide a novel industrial application with a specific enzymatic function.

Batch Production of Chiral Epichlorohydrin by Enantioselective Hydrolysis Reaction using Rhodosporidium toruloides (Phodosporidium toruloides의 광학선택적 가수분해활성을 이용한 Chiral Epichlorohydrin의 회분식 생산)

  • 이은열;이재화
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.38-41
    • /
    • 2004
  • Enantioselective hydrolysis for the producing chiral epichlorohydrin from its racemic substrate was investigated using epoxide hydrolase activity of Rhodosporidium toruloides SJ-4. The effects of reaction parameters including pH, temperature, initial substrate concentration on initial hydrolysis rate and enantioselectivity were analyzed and optimized. The addition of detergent, Tween 20, enhanced the hydrolysis rate and enantioselectivity. Chiral (R)-epichlorohydrin with high optical purity (>99% ee) and yield of 25% (theoretically 50% maximum yield) was obtained from its racemate of 20 mM.

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

ATP Hydrolysis Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus Helicase

  • Lee, Na-Ra;Lee, A-Ram;Lee, Bok-Hui;Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1724-1728
    • /
    • 2009
  • Severe acute respiratory syndrome coronavirus (SARS-CoV) helicase separates the double-stranded nucleic acids using the energy from ATP hydrolysis. We have measured ATPase activity of SARS-CoV helicase in the presence of various types of nucleic acids. Steady state ATPase analysis showed that poly(U) has two-times higher turnover number than poly(C) with lower Michaelis constant. When M13 single-stranded DNA is used as substrate, the Michaelis constant was about twenty-times lower than poly(U), whereas turnover numbers were similar. However, stimulation of ATPase activity was not observed in the presence of double-stranded DNA. pH dependent profiles of ATP hydrolysis with the helicase showed that the optimal ATPase activities were in a range of pH 6.2 ~ 6.6. In addition, ATP hydrolysis activity assays performed in the presence of various divalent cations exhibited that $Mg^{2+}$ stimulated the ATPase activity with the highest rate and $Mn^{2+}$ with about 40% rate as compared to the $Mg^{2+}$.

Hydrolysis Mechanism of N-(benzoyl)-C-(N-methylanilino)imidoylchloride Derivatives (N-(benzoyl)-C-(N-methylanilino)imidoylchloride 유도체의 가수분해 반응메카니즘)

  • Kwon Ki-Sung;Lee Yong-Gu;Sung Nack-Do;Kim Chon-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.618-625
    • /
    • 1993
  • Rate constants of hydrolysis of N-(benzoyl)-C-(N-methylanilino)imidoylchlorides were determined by UV spectrophotometry in 50% (v/v) aqueous methanol at 25$^{\circ}C$. On the basis of rate equation, substituent effect, solvent effect, salt effect, thermodynamic parameters and hydrolysis product analysis, it may be concluded that the hydrolysis of N-(benzoyl)-C-(N-methylanilino)imidoylchlorides proceed through $S_N$1 mechanism via azocarbonium ion intermediate in the range of from pH 3.0 to pH 10.0, while above pH 10.0 and below pH 3.0 the hydrolysis proceeds through nucleophilic addition-elimination (A$d_{N-E}$) mechanism.

  • PDF

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.