• Title/Summary/Keyword: Hydrolysis rate

Search Result 713, Processing Time 0.024 seconds

Study on Hydrolytic Kinetics of Langmuir Monolayers of Biodegradable Polylactide Derivatives

  • Lee, Jin-Kook;Ryou, Jin-Ho;Lee, Won-Ki;Park, Chan-Young;Park, Sang-Bo;Min, Seong-Kee
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.476-480
    • /
    • 2003
  • The rate of hydrolysis of Langmuir monolayer films of biodegradable polylactide (PLA) derivates was investigated at the air/water interface. The present study investigated such parameters as surface pressure, pH, and time. The hydrolysis of polyester monolayers depended strongly on the subphase pH, the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to acidic or neutral subphases. By increasing the concentration of the degradation medium, the hydrolytic rate of dl-PLA monolayers was accelerated (accelerating effect). In addition, the basic hydrolysis of modified PLA with small amounts of hydrophilic (benzyloxycarbonyl) methyl morpholine-2,5-dione or glycolide was much faster than that of the PLA homopolymer.

Indole Derivatives II. The Kinetics and Mechanism of the Hydrolysis of Indolylacrylophenone Derivatives (인돌 유도체 II. Indolylacrylophenone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응 속도론적 연구)

  • Lee, Ki-Chang;Ryu, Jung-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • The kinetics of the hydrolysis of indolylacrylophenone derivatives(IA) was investigated by ultraviolet spectrophotometry in 30% dioxane-$H_2O$ at 25$^{\circ}C$ Rate equations were obtained over a wide pH range. On the basis of rate equation, general base catalysis and Hammett's plot, the mechanism of hydrolysis to the (IA) were proposed: Below pH 3.0, the hydrolysis of (IA) was proportional to hydronium ion concentration, between pH 4.0${\sim}$9.0 neutral water molecule and hydroxide ion were added to carbon-carbon double bond and over pH 10.0 hydrolysis of (IA) was proportional to hydroxide ion concentration.

Hydrolysis of p-Nitrophenyl Carboxylic Ester in N,N-Dimethyl-N-dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride Micellar Solution (N,N-Dimethyl-N-Dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride 미셀 용액속에서 p-Nitrophenyl Carboxylic Ester의 가수분해)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.509-516
    • /
    • 2008
  • New functional surfactant, N,N-dimethyl-N-dodecyl-N-(2-methyl benzimidazoyl) ammonium chloride(DDBAC) having benzimidazole(BI) functional group have been synthesized and the critical micellar concentration of DDBAC measured by surface tentiometry and electric conductivity method was $8.9{\times}10^{-4}M$. Micellar effects in DDBAC functional surfactant solution on the hydrolysis of p-nitrophenylacetate(p-NPA), p-nitro-phenylpropionate(p-NPP) and p-nitrophenylvalerate(p-NPV) were observed with change of various pH (Tris-buffer). The pseudo first rate constants of hydrolysis of p-NPA, p-NPP and p-NPV in optimum concentration of DDBAC solution increase to about 160, 280 and 600 times, respectively, as compared with those of aqueous solution at pH 8.00(Tris-buffer). It is considered that benzimidazole functional moiety accelerates the reaction rates of hydrolysis because they act as nucleophile or general base. In optimum concentration of DDBAC solution, the rate constants of hydrolysis of p-NPP and p-NPV increase to about 1.5 and 3.0 times, respectively, as compared with that of p-NPA. It means that the more the carbon numbers of alkyl group of substrates, the larger the binding constants between DDBAC micelle and substrates are. To know the hydrolysis mechanism of p-NPCE(p-NPA, p-NPP and p-NPV), the deuterium kinetic isotope effects were measured in $D_2O$ solutions. Consequently the pseudo first order rate constant ratios in $H_2O$ and $D_2O$ solution, $k_{H_2O}/k_{D_2O}$, were about $2.8{\sim}3.0$ range. It means that the mechanism of hydrolysis were proceeded by nucleophile and general base attack in approximately same value.

Optimization of organosolv pretreatment with sulfuric acid for enhancing enzymatic hydrolysis of Pitch Pine (Pinus rigida)

  • Park, Na-Hyun;Kim, Hye-Yun;Gwak, Ki-Seob;Koo, Bon-Wook;Yeo, Hwan-Myeong;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.505-505
    • /
    • 2009
  • The object is to optimize the best condition of organosolv pretreatment process with sulfuric acid as a catalyst. As a material, Pitch pine (Pinus rigida) was ground and sieved through 40-mesh screen, and Celluclast and $\beta$-glucosidase were used as enzymes for enzymatic hydrolysis. Pretreatment processes were carried out in the minibomb, and 20 g of materials with 200 ml of 50% ethanol solution (v/v) with 1% sulfuric acid as a catalyst. Pretreatment temperature was varied from $150^{\circ}C$ to $190^{\circ}C$, and time was varied from 0 to 20 min. Then, residual materials were used for enzymatic hydrolysis. The best conditions were selected by estimating followed enzymatic hydrolysis rate and degradable rates after pretreatment process. The highest value of enzymatic hydrolysis rate was obtained as 55 - 60% at 160 and at $180^{\circ}C$, but the value decreased under more severe conditions. As the residual rates decreased under severe conditions, it infered that the decrease of sugar contents limits enzymatic hydrolysis rates. Combined with enzymatic hydrolysis rate, degradable rates and H-factors, the temperatures at $160^{\circ}C$ for 20 min and at $180^{\circ}C$ for 0 min were concluded as the optimized conditions where have the lowest H-factor value for considering energy input.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9) (디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon-Yong;Kim, Jae-Hyoun
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Interaction of pharmaceuticals with betacyclodextrin III Influence of Betacyclodextrin on Phenobarbital Hydrolysis

  • Min, Shin-Hong
    • YAKHAK HOEJI
    • /
    • v.16 no.4
    • /
    • pp.155-161
    • /
    • 1972
  • The hydrolysis of phenobarbital is decelerated in alkaline solution by betacyclodextrin. The betacyclodextrin inhibits the degradation of phenobarbital up to 1.5 fold in the system containing 1% betacyclodextrin. The degradation mechanism in systems containing betacyclodextrin is the same that in system without complexing agent, although the rate constants are different. The pH dependence of the hydrolysis rate deceleration is compared with the ionization percent of betacyclodextrin. The results indicate that a direct relationship does not exist between the ionization of betacyclodextrin. It seems reasonable therefore that the phenobarbital undergoes a stable complex with betacyclodextrin and complex formation would provide a better shield for the phenobarbital from hydroxyl ion attack.

  • PDF

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min;Kim, Hyun-Jung;Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.140-148
    • /
    • 2010
  • This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

Determining Optimum Condition of Acid Hydrolysis Technique for Food Waste Reduction

  • Kim, Eui Yeong;Choi, Young Gwang;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.606-614
    • /
    • 2017
  • Amount of food waste has been increased annually in Korea and re-use of food waste as a fertilizer or soil amendment in agricultural field has been studied. Therefore, main purpose of this research was to determine optimum condition of hydrolysis for food waste management. Three different solvents, HCl, $H_2SO_4$, and KOH, were used and varied concentration at the range of 10~30% and hydrolysis time at the range of 1~3 hours were evaluated. In general, reduction rate of food waste was increased when concentration of solvent and hydrolysis time was increased except when KOH was used. Among different solvents, concentration, and hydrolysis time, the highest reduction rate (97.79%) was observed when 30% of HCl was used with temperature of $140^{\circ}C$ at 2 hours of hydrolysis time. In addition, neutralization effect of alkalic materials, shell waste (SW) and egg shell (ES) was evaluated. Both SW and ES increased pH of finished acid hydrolysis solution up to 7.61 indicating that neutralization effect of SW and ES was sufficient for finished acid hydrolysis solution. Contents of organic matter was also at the range of 10.7~13.04% and 5.53~8.04% respectively when HCl and $H_2SO_4$ were used as solvent. Overall, hydrolysis technique can be used to manage food waste with selected optimum condition in this study and characteristics of finished hydrolysis solution after neutralization might be suitable for soil amendments.

Hydrolysis of the Ester Crosslinking on Cotton Fabric Treated with Polycarboxylic Acid(I) (polycarboxylic acid 처리면포의 Ester 가교결합의 가수분해 (I))

  • 강인숙;배현숙
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2003
  • In this research, we applied FT-IR spectroscopy to study the hydrolysis of the ester-crosslinking formed by various polycarboxylic acids on the cotton fabric. We observed the following; (1) the ester-crosslinking is less durable to hydrolysis than ether-crosslinking under all conditions; (2) the ester-crosslinking formed by polycarboxylic acids having more than three carboxyl groups, such as butanetetracarboxylic acid (BTCA), are substantially more durable to hydrolysis than the acids having two or three carboxyl groups, such as maleic and citric acid; (3) alkaline conditions drastically accelerate the hydrolysis of both urea- and ester-crosslinking; and (4) the ester-crosslinking formed by poly(maleic acid) is more resistant to hydrolysis at alkaline conditions than BTCA. (5) polycarboxylic acid molecules were removed from the fabric at same rate as the hydrolysis of the ester linkage. FT-IR spectroscopy has proved to be a useful analytical technique for evaluating the hydrolysis of the crosslinked cotton fabric.