• Title/Summary/Keyword: Hydrolysis of CS

Search Result 19, Processing Time 0.026 seconds

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

A Study on the Alkalimetric Titration with Gran Plot in Noncomplexing Media for the Determination of Free Acid in Spent Fuel Solutions

  • 서무열;이창헌;손세철;김정숙;엄태윤
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 1999
  • Based on the study of hydrolysis behaviour of U(Ⅵ) ion and major fission product metal ions such as Cs(Ⅰ), Ce(Ⅲ), Nd(Ⅲ), Mo(Ⅵ), Ru(Ⅱ), and ZR(Ⅳ) in the titration media, the performance of noncomplexing-alkalimetric titration method for the determination of free acid in the presence of these metal ions was investigated and its results were compared to those from the completing methods. The free acidities could be determined as low as 0.05 meq in uranium solutions in which the molar ratio of U(Ⅵ)/H+ was less than 5, when the end-point of titration was estimated by Gran plot. The biases in the determinations were less than 1% and about +3% respectively for 0.4 meq and 0.05 meq of free acid at the U(Vl)/H+ molar ratio of up to 5. Applicability of this method to the determination of free acid in spent fuel solutions was confirmed by the analysis of nitric acid content in simulated spent fuel solutions and in a real spent fuel solution.

Functional Characterization of the ${\alpha}$- and ${\beta}$-Subunits of a Group II Chaperonin from Aeropyrum pernix K1

  • Lee, Jin-Woo;Kim, Se Won;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kwon, Hyun-Ju;Kim, Byung-Woo;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.818-825
    • /
    • 2013
  • We isolated and functionally characterized the ${\alpha}$- and ${\beta}$-subunits (ApCpnA and ApCpnB) of a chaperonin from Aeropyrum pernix K1. The constructed vectors pET3d-ApCpnA and pET21a-ApCpnB were transformed into E. coli Rosetta (DE3), BL21 (DE3), or CodonPlus (DE3) cells. The expression of ApCpnA (60.7 kDa) and ApCpnB (61.2 kDa) was confirmed by SDS-PAGE analysis. Recombinant ApCpnA and ApCpnB were purified by heat-shock treatment and anion-exchange chromatography. ApCpnA and ApCpnB were able to hydrolyze not only ATP, but also CTP, GTP, and UTP, albeit with different efficacies. Purified ApCpnA and ApCpnB showed the highest ATPase, CTPase, UTPase, and GTPase activities at $80^{\circ}C$. Furthermore, the addition of ApCpnA and ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively. In particular, the addition of ATP or CTP to ApCpnA and ApCpnB resulted in the most effective prevention of thermal aggregation and inactivation of CS and ADH. The ATPase activity of the two chaperonin subunits was dependent on the salt concentration. Among the ions we examined, potassium ions were the most effective at enhancing the ATP hydrolysis activity of ApCpnA and ApCpnB.

Competitive Solvent Extraction of Alkali Metal Ions with Azacrown Ether Phosphinic Acids (아자크라운에테르포스피닉산에 의한 알카리금속이온의 경쟁용매추출)

  • Nam, Chong-Woo;Chung, Yeong-Jin;Yang, Il-Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.266-272
    • /
    • 1992
  • Azacrownoalkyl phenylphosphinic acids were synthesized and their competitive solvent extraction characteristics from water to chloroform layer were investigated. Phosphinic acids were synthesized in good yields by one step reaction of phenylphosphinate, aldehyde, and monoazacrown ether and then basic hydrolysis of the resulting phosphinate dsters. These complexing agents revealed a wide effective pH range in extraction of alkali metal ions from water to the organic phase and total metal ion loading at pH 11 was about 75%. The selectivity of the cation extraction was determined mainly by the cavity size of the azacrown ethers, showing $Na^+$ >> $K^+$ > $Rb^+$ > $Li^+$ > $Cs^+$ for the alkyl phenylphosphinic acid ${\underline{2}}$, containing monoaza-15-crown-5 and $K^+$ >> $Rb^+$ > $Na^+$ > $Cs^+$ > $Li^+$ for the alkyl phenylphosphinic acid, ${\underline{3}}$, containing monoaza-18-crown-6 moiety. Applicable pH range of these azacrown ether phosphinic acids in solvent extraction of alkali metal cations was wider than a crownether carboxylic acid with similar selectivity, showing considerable amount of metal ion loading in slightly acidic or neutral media.

  • PDF

Cellulose 분해효소를 분비하는 Trichoderma sp. C-4 균주의 분리 및 특성

  • Son, Young-June;Sul, Ok-Ju;Chung, Dae-Kyun;Han, In-Seob;Choi, Yun-Jae;Jeong, Choon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.346-353
    • /
    • 1997
  • During the screening of cellulase producing microorganisms, a fungal strain C-4 was selected from etiolated leaves. Based on taxonomic studies, the fungus could be classified as a strain of Trichoderma sp. When the strain C-4 was cultured in Mandels' media at 28$circ$C for 6 days, the enzyme activities detected in broth were as follows: 8.2 U/ml (28.1 U/mg) of CMCase activity, 0.75 U/ml (2.58 U/mg) of Avicelase activity, 1.67 U/ ml (5.68 U/mg) of $eta$-glucosidase activity. The optimum pH for enzyme induction was 6.2. The crude enzyme retained 100% of its original CMCase activity at 50$circ$C for 1 hr (pH 5.0), and at 4$circ$C for 24 hrs (pH 5.0). There was no effect on the CMCase activity in the presence of 1 mM of CsCl, LiCl, MgCl$_{2}$, and FeCl$_{2}$, respectively. When the crude enzyme was treated with trypsin and chymotrypsin (2% W/w) for 10 minutes, the remaining CMCase activity was 70%, but there was no further loss of activity for 60 minutes treatment at 30$circ$C. The crude enzyme showed the synergism with rumen fluid for the hydrolysis of Avicel and CMC by 118% and 130%, respectively.

  • PDF

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Comparison of Characteristics of Acid-catalyzed Hydrothermal Fractionation for Production of Hemicellulose Hydrolyzate from Agricultural Residues (농경잔류물로부터 헤미셀룰로오스 가수분해물 생산을 위한 산촉매 열수 분별공정의 특성 비교)

  • Hwang, Jong Seo;Oh, Kyeong Keun;Yoo, Kyung Seun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.414-422
    • /
    • 2022
  • The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of two typical agricultural residues. The fractionation conditions converted into combined reaction severity (CS) in the range of 1.2-2.9 was used to establish a simple reaction criteria at glance. The hemicellulosic sugar yield of 56.6% was shown when rice straw was fractionated at the conditions at the conditions; 160 ℃ of temperature 0.75% (w/v) of H2SO4, 20 min of reaction time, 1:15 solid/liquid ratio. The hemicellulosic sugar yield of 83.0%, however, was achieved when barley straw was fractionated at the conditions at the conditions; 150 ℃ of temperature 0.75% (w/v) of H2SO4, and 15 min of reaction time, 1:10 solid/liquid ratio. For barley straw, acid-catalyzed hydrothermal fractionation could be effectively performed. After the fractionation process, the remaining fractionated solids were 48.5% and 57.5% from raw rice and barley straws, respectively. The XMG contents in the solid residues decreased from 17.3% and 17.6% to 6.0% and 2.6%, which corresponded to 16.7% and 8.5% on the basis of the raw straws, respectively. In another way, only 5.6% of cellulose and 8.5% of XMG were lost due to excessive decomposition during the acid-catalyzed hydrothermal fractionation of barley straw, compared to cellulose and XMG losses of 6.4% and 26.6% in rice straw. Hemicellulosic sugars from the rice straw were considered more over-decomposed due to the somewhat higher reaction severity at the acid-catalyzed hydrothermal fractionation.

Comparison of Antioxidant Activities of Enzymatic and Methanolic Extracts from Ecklonia cava Stem and Leave (감태(Ecklonia cava) 줄기 및 잎의 효소적 추출물과 메탄올 추출물에 의한 항산화 활성비교)

  • Lee, Seung-Hong;Kim, Kil-Nam;Cha, Seon-Heui;Ahn, Gin-Nae;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1139-1145
    • /
    • 2006
  • In this study, antioxidant activities of enzymatic and methanolic extracts from E. cava stem and leave were evaluated by measuring the scavenging activities on 1,1 diphenyl 2 picrylhydrazyl (DPPH), hydroxyl radical, hydrogen peroxide and the inhibitory effects on DNA damage induced by oxidative stress of cells. Enzymatic extracts were prepared by enzymatic hydrolysis of both stem and leave using food grade five different carbohydrases (Viscozyme, Celluclast, AMG, Termamyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The enzymatic extracts were lower than methanolic extracts in polyphenol contents, but higher in extraction yield by approximately 30%. The enzymatic extracts were superior to methanolic extracts in DPPH and H2O2 scavenging activities and DNA damage protective effect. There were no significant antioxidant activity difference between stem and leave, but the extracts of leave were relatively better than those of stem. In this study it is suggested that E. cava stem as well as its leave would be a good raw materials for antioxidants compound extraction and enzymatic hydrolysis would be a good strategy to prepare antioxidant extracts from seaweeds.

Enzymatic Characteristics of Water-Insoluble ${\alpha}-Amylase$ Immobilized on Dithiocarbamate Wool (Dithiocarbamate Wool에 고정(固定)된 불용성(不溶性) ${\alpha}-Amylase$의 특성(特性)에 대하여)

  • Lee, Kyung-Hee;Kim, Jong-Deog;Lee, Kang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 1985
  • Yellowish modified wool, dithiocarbamate(DTC) wool, was synthesized by partial hydrolysis in 0.2 N-NaOH reacting with carbon disulfide to use as ${\alpha}-amylase$ immobilization matrix. ${\alpha}-amylase$ was immobilized reacting with sulfide group of DTC-wool by covalent binding within 1 hour. 0.5 gram of this preparation, $DTC-wool-{\alpha}-amylase$, contained 150 ug of enzyme protein and its specific activity was about 90% of the native one. General properties of $DTC-wool-{\alpha}-amylase$ were a little different from optimum temperature, optimum pH, heat stability, kinetic constants and activation energy. An apparent Michaelis constant and maximum velocity of $DTC-wool-{\alpha}-amylase$ were 5.56 mg/ml and 0.37 mg/ml. $min^{-1}$ respectively, while activation energy was 16.6 kcal/mole.

  • PDF