• Title/Summary/Keyword: Hydrolysis degree

Search Result 280, Processing Time 0.025 seconds

Preparation of Oligosaccharides from Alginic Acid by Enzymic Hydrolysis (효소분해에 의한 알긴산 올리고당류의 제조)

  • Joo, Dong-Sik;Lee, Jung-Suck;Park, Jung-Je;Cho, Soon-Yeong;Kim, Hee-Kyung;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.146-151
    • /
    • 1996
  • For the purpose of production of oligosaccharides from alginates, a bacterium was isolated from seaweed, and then an enzyme which degraded alginates was obtained from the bacterium. A specific activity of the enzyme was shown in G-rich block and Na-alginate (Wako Co.) as a result of reaction between the enzyme and six types of alginates (G-rich block, M-rich block and 4 commercial Na-alginate). Degradation products were prepared from the Na-alginate (Wako Co.) by the enzyme. The oligosaccharides were fractioned by Sephadex G-25 and Bio-gel P-2 and identified on a thin layer chromatography (TLC). Degree of polymerization (DP) of the oligosaccharides was shown from 2.6 to 7.5.

  • PDF

Biodegradability of Viscose Rayon and Lyocell Fibers (비스코스 레이온과 리오셀의 생분해성)

  • Yoon Chang Sang;Park Chung Hee;Kang Yun-kyung;Im Seung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.3_4 s.141
    • /
    • pp.470-477
    • /
    • 2005
  • This study was carried out to evaluate the biodegradability of viscose rayon and lyocell fibers, employing soil burial test, activated sludge test and enzymatic hydrolysis. Using X-ray analysis, crystallinity and morphology change was investigated. External changes after degradation were also observed by SEM and digital photographs. Vscose rayon fibers exhibited higher biodegadation than lyocell fibers, indicating that lower crystallinity favored the biodegradation. Among the biodegradability of lyocell fibers there was a tendency that fibers with lower crystallinity and higher moisture regain had higher values. When external changes after degradation being observed, it was shown that there were microorganisms growing on the surfaces of samples accompanying lading and weakening. From these results it was concluded that biodegradability of the specimens was most closely correlated to the moisture regain and crystallinity of fibers which reflects hydrophilicity and internal structure.

Quality characteristics and protein digestibility of Protaetia brevitarsis larvae

  • Lee, Seonmin;Choi, Yun-Sang;Jo, Kyung;Kim, Tae-Kyung;Yong, Hae In;Jung, Samooel
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.741-752
    • /
    • 2020
  • Herein, the in vitro protein digestibility of lyophilized Protaetia brevitarsis larvae flour with and without defatting using 70% ethanol was compared with beef loin. Proximate analysis showed that the defatted larvae contained the highest protein content (p < 0.05). The viable counts of total aerobic bacteria, Escherichia coli, and coliform bacteria decreased significantly after defatting the larval samples with 70% ethanol (p < 0.05). Measurement of α-amino group content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed higher amounts of low molecular weight proteins in the larvae compared to beef loin (p < 0.05). After in vitro digestion, the degree of protein hydrolysis of the digesta was higher for both larvae samples compared to beef loin (p < 0.05). No change was observed in the in vitro larval protein digestibility after defatting. These results highlight the excellent protein digestibility of P. brevitarsis larvae with high protein content. Defatting insect flour with 70% ethanol could enhance microbial safety while maintaining excellent protein digestibility.

Physicochemical and structural properties of lintnerized starches from sweet Potato (고구마전분의 산처리 특성과 산분해 잔사의 구조적 특성)

  • Kim, Sung-Ran;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.196-201
    • /
    • 1992
  • Characteristics on lintnerization of dry type (Suwon 147) and moist type (Hwangmi) sweet potato starches were investigated. Chain distribution of lintnerized starches was also studied by debranching with pullulanase. Hydrolytic patterns of two starches showed two distinct stages and hydrolysis extents of Suwon 147 starch were lower than those of Hwangmi starch. The relative crystallinities of Suwon 147 starches were higher than those of Hwangmi starch. The elution profiles of lintnerized starches were composed of two peaks about degree of polymerization (DP) 25 and DP 15. The elution profiles of debranched samples showed only one peak about DP 15 and peak DP of Suwon 147 lintnerized starch was higher than that of Hwangmi.

  • PDF

A Study on Natural Dyeing (3) - Change of physical structure and Chinese gallotannin treatment on silk fabric - (천연염색에 관한 연구 (3) - 견에 대한 Chinese gallotannin 처리 및 구조변화 -)

  • Kim, Hye In;Eom, Seong Il;Park, Su Min
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.1-1
    • /
    • 2001
  • As the basic study to investigate the mechanism of improvement in the dyeing fastness of natural dyes on silk fabrics the optical behavior of tannin solution, the optimal condition of tannin treatment and the changes of the physical structure of silk fabrics were studied in the treatment of tannin. Results obtained were as follows ; 1.The K/S values of tannin-treated silk fabrics were not changed by tannin content on silk fabrics but yellowing of tannin in treatment condition. 2. As the concentration of tannin was increased in its treating condition, the tannin content and K/S vague of tannin-treated silk fabrics were increased. 3. Because tannin gave rise to yellowing by hydrolysis and oxidation at high temperature, the higher tannin-treating temperature was, the lower the tannin content and K/S values of silk fabrics 4. The tannin content of silk fabric was higher in acidic treating condition and the highest K/S value was showed at pH 5. 5. As the tannin content of silk fabric was increased, the value of ζ -potential of it became negative. 6. As the tannin content of silk fabric was increased, the crystallinity and crystallite size of it were decreased. This meant that the fraction of amorphous region in the fibers increased. And the degree of orientation of it was decreased with the tannin treatment.

A Study on Natural Dyeing (3) - Change of physical structure and Chinese gallotannin treatment on silk fabric - (천연염색에 관한 연구 (3) -견에 대한 Chinese gallotannin 처리 및 구조변화-)

  • 김혜인;엄성일;박수민
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.289-297
    • /
    • 2001
  • As the basic study to investigate the mechanism of improvement in the dyeing fastness of natural dyes on silk fabrics the optical behavior of tannin solution, the optimal condition of tannin treatment and the changes of the physical structure of silk fabrics were studied in the treatment of tannin. Results obtained were as follows ; 1 The K/S values of tannin-treated silk fabrics were not changed by tannin content on silk fabrics but yellowing of tannin in treatment condition. 2. As the concentration of tannin was increased in its treating condition, the tannin content and K/S vague of tannin-treated silk fabrics were increased. 3. Because tannin gave rise to yellowing by hydrolysis and oxidation at high temperature, the higher tannin-treating temperature was, the lower the tannin content and K/S values of silk fabrics 4. The tannin content of silk fabric was higher in acidic treating condition and the highest K/S value was showed at pH 5. 5. As the tannin content of silk fabric was increased, the value of $\xi$ -potential of it became negative. 6. As the tannin content of silk fabric was increased, the crystallinity and crystallite size of it were decreased. This meant that the fraction of amorphous region in the fibers increased. And the degree of orientation of it was decreased with the tannin treatment.

  • PDF

Effect of Polymerization Conditions on the Characteristics of Polyvinyl Acetate Emulsions

  • Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.28-34
    • /
    • 1998
  • Polyvinyl acetate emulsion has been widely used as adhesives for wood and paper, paint additives and binders for fiber, leather, and other materials because it is an excellent adhesive with many advantages including low in toxicity risks and manufacturing cost. It is expected the consumption of polyvinyl acetate emulsion as adhesives will increase in cigarette industry as well as in paperboard coating industry. Recently the operation speed of the cigarette tip wrapper increased so substantially that improvement of the emulsion properties is required including good wet tack development, narrow and controlled particle size distribution, low viscosity, etc. In this study the effects of such polymerization conditions as the type and amount of emulsifier, internal or external plasticizing, and emulsification methods on the viscosity and particle size of polyvinyl acetate emulsions were examined. Results showed that polyvinyl alcohol with a high degree of hydrolysis and low molecular weight and nonionic surfactants are superior to anionic surfactant in improving adhesion and emulsion stability. They also tend to produce emulsions with smaller particle size. External plasticization with dipropylene glycol dibenzoate was more effective in improving flexibility than internal plasticization with butyl acrylate. Monomer emulsification under high shear was more effective in decreasing the particle size.

  • PDF

Bifunctional Recombinant Fusion Enzyme Between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Thermophilic Microorganism Metallosphaera hakonensis

  • Seo, Ju-Seok;An, Ju-Hee;Cheong, Jong-Joo;Choi, Yang-Do;Kim, Chung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1544-1549
    • /
    • 2008
  • MhMTS and MhMTH are trehalose ($\alpha$-D-glucopyranosyl-[1,1]-$\alpha$-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused in-frame in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around $70^{\circ}C$ and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at $70^{\circ}C$ for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above $80^{\circ}C$. The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Investigation of the Hydrolysis of Polysaccharides by Crude Cellulases prepared from Several Species of Fungi (몇 종류의 곰팡이에서 분리되는 Crude Cellulase의 다당류 분해능력의 조사)

  • 김은수;김영민;이인규;최태주
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 1975
  • Crude cellulases freshly prepared from cultures of Aspergillus niger, Prnicillum motatum, Trichoderma vride 16273 and Trichoderma viride 16374 were assayed on 4 different substrates including Na-CMC, cellulose powder, starch and sucrose. Enzyme prepared from A. niger contained highly active hydrolytic enzymes of the 4 substrates assayed. P. notatum [yielded relatively lower amount of cellulase but the extracts were also highly reactive on starch and sucrose. Trichoderma viride 16274 yielded very little cellulase and invertase, but the extracts showed a high degree of amylase activity. Trichoderma viride 16374, however, yielded collulase comparable to that of Penicillium notatum, but lower activities of amylase and invertase were seen. Commercial cellulases prepared from Penicillium notatum (cellulase[K]) and Trichoderma viride(cellulase[J]) indicated enzyme activities closely parallel to the crude enzymes freshly prepared from fungus cultures. The optimum pH's of cellulolytic activities of cellulase[K] and cellulase[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase[K] and cellualse[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase [K] and cellulase [J] were $60{\circ}C$ and $50{\circ}C$ respectively. Assuming the average molecular weight of Na-CMC is about 115,000, the Km values of cellulase [K] and cellulase[J] were found to be $3.3{\times}10^{-5}/nM$ and $3.3{\times}10^{-4}/nM$ respectively.

  • PDF