• Title/Summary/Keyword: Hydrolysis degree

Search Result 280, Processing Time 0.028 seconds

Synthesis of Multifunctional AN-co-(MMA/IA) Fibrous ion-exchanger by Hydrolysis and Adsorption Properties for Trace Transition Elements (가수분해에 의한 AN-co-(MMA(IA) 다관능성 섬유이온교환체의 합성 및 미랑 전이금속 흡착특성)

  • 황택성;이선아;황계순
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.765-773
    • /
    • 2001
  • In In order to remove harmful trace elements such as $Co^{2+}$, $Ni^{2+}$ , $Cr_2O_7\;^{2-}$ from water, we synthesized AN-co-(MMA/IA) according to various mole ratio of monomers and spun by wet-spinning. And multi-functional PAN ion exchangers were prepared by hydrolysis. We observed structure, degree of functionalization, ion exchange capacity, distribution coefficient and mechanical properties for ion exchanger. Anion exchange capacity decreased in 4.5 ~ 4.2 meq/g with increasing of IA content and cation exchange capacity increased in 1.8 ~ 2.2 meq/g. Tensile strength of the ion exchanger increased up to 0.008 mol% IA content and appeared maximum value by 216$kg/cm^2$Distribution coefficient for AN-co-(MMA/IA) ion exchanger appeared maximum value for Co(II), Ni(II) in pH 5-6 range and for Cr(III) in pH 3-4 range. And the adsorption capacity was in the order of Cr(III) > Co(II) > Ni(II) for multicomponent in continuous process.

  • PDF

Microstructural Development in Synthetic Hydroxyapatite (합성 수산화아파타이트의 미세구조 발달)

  • Kim, Jong-Hee;Park, Young-Min;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.289-296
    • /
    • 2004
  • Whisker and short rod shaped hydroxyapatite (Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$ with stoichiometric composition (Ca/P=1.62 -1.67, molar ratio) has been synthesized by hydrolysis and hydrothermal reaction of aqueous $\alpha$-Ca$_3$(PO$_4$)$_2$($\alpha$-TCP) solution (pH 11), respectively. The shape of resultant HAp was mainly dependent on synthetic route and the microstructural development was on processing condition. In hydrolysis processing, the degree of intersection of whiskerlike particles and agglomeration in the apsis line increased with increasing reaction time. In hydrothermal synthesis, the reaction product obtained under excessive reaction time ($\geq$3 h at 20$0^{\circ}C$) was severely agglomerated without further grain growth above certain critical size (0.75 ${\mu}{\textrm}{m}$ in length, 0.3${\mu}{\textrm}{m}$ 11m in diameter).

Effect of Mixing Pattern of Different Types of Bioreactor on Enzymatic Hydrolysis of Cellulose (각종 섬유질 효소당화 반응조내의 현탁액의 혼합교반양상이 효소당화에 미치는 영향)

  • 박진서;박동찬이용현
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1989
  • Celluose is an insoluble substrate, therefore, a proper mixing of the cellulose suspension is essential for an effective enzymatic hydrolysis. To study the effect of mixing motion of various enzyme reactors on enzymatic hydrolysis of cellulose, three distinct types of biroreator: vertical impeller type bioreator(VITB), horizontal paddle type bioreactor(HPTB), and tumbling drum type bioreactor(TDTB), were assembled and their performance was compared. The optimal agitation speed was 100rpm for VITB and HPTB, 200rpm for TDTB. The saccharification efficiency of each reactor was compared under the optimal agitation intensity. The highest degree of saccharification was achieved in the case of VITB, especially, at high cellulose concentration. The VITB seems to be the most suitable type of bioreactor that can maintain proper mixing pattern for effective enzyme reaction. In the view of energy consumption, the TDTB showed the lowest value: however, the energy consumption was rapidly increased at high concentration of celluose. To dertermine the most suitable type of bioreactor, the entire process, including substrate cost, substrate concentration, and feasibility of scale-up, needs to be evaluated.

  • PDF

Functional Properties of Silkworm Larvae Protein Concentrate After Enzyme Treatments (효소처리한 번데기 농축단백질의 기능적 특성)

  • Jeon, Jeong-Ryae;Park, Jyung-Rewng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.6
    • /
    • pp.706-711
    • /
    • 1992
  • Silkworm larvae protein concentrate was partially hydrolyzed at $50^{\circ}C$ by papain at pH 2.0 and pepsin at pH 7.0 for 10min and 60min and the effect of enzymatic modification on the functional properties of silkworm larvae protein concentrate was examined. The degrees of hydrolysis measured by TCA-soluble nitrogen content were 10.2% and 19.2% when hydrolyzed by pepsin for 10min and 60min. The nitrogen solubility in water and 0.03M $CaCl_2$ was increased with increasing the degree of hydrolysis, and bulk density, water and oil absorption were also enhanced by enzymatic hydrolysis when compared with the control.

  • PDF

Effects of Lactobacillus helveticus Fermentation on the Ca2+ Release and Antioxidative Properties of Sheep Bone Hydrolysate

  • Han, Keguang;Cao, Jing;Wang, Jinghui;Chen, Jing;Yuan, Kai;Pang, Fengping;Gu, Shaopeng;Huo, Nairui
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1144-1154
    • /
    • 2018
  • Both the calcium and collagen in bone powder are hard to be absorbed by the body. Although enzymatic hydrolysis by protease increased the bio-availability of bone powder, it was a meaningful try to further increase $Ca^{2+}$ release, oligopeptide formation and antioxidant activity of the sheep bone hydrolysate (SBH) by lactic acid bacteria (LAB) fermentation. Lactobacillus helveticus was selected as the starter for its highest protease-producing ability among 5 tested LAB strains. The content of liberated $Ca^{2+}$ was measured as the responsive value in the response surface methodology (RSM) for optimizing the fermenting parameters. When SBH (adjusted to pH 6.1) supplemented with 1.0% glucose was inoculated 3.0% L. helveticus and incubated for 29.4 h at $36^{\circ}C$, $Ca^{2+}$ content in the fermented SBH significantly increased (p<0.01), and so did the degree of hydrolysis and the obtaining rate of oligopeptide. The viable counts of L. helveticus reached to $1.1{\times}10^{10}CFU/mL$. Results of Pearson correlation analysis demonstrated that LAB viable counts, $Ca^{2+}$ levels, obtaining rates of oligopeptide and the yield of polypeptide were positively correlated with each other (p<0.01). The abilities of SBH to scavenge the free radicals of DPPH, OH and ABTS were also markedly enhanced after fermentation. In conclusion, L. helveticus fermentation can further boost the release of free $Ca^{2+}$ and oligopeptide, enhance the antioxidant ability of SBH. The L. helveticus fermented SBH can be developed as a novel functional dietary supplement product.

Optimization of Reduced Bitterness of Alcalase-treated Anchovy Engrauris japonica Hydrolysate by Aminopeptidase Active Fraction from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의한 Alcalase 처리 멸치(Engrauris japonica) 가수분해물의 쓴맛 개선 최적화)

  • Yoon, In Seong;Kim, Jin-Soo;Lee, Jung Suck;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.724-732
    • /
    • 2021
  • This study used response surface methodology to investigate the optimal conditions to reduce the bitterness of alcalase-treated anchovy hydrolysate (AAH) by the aminopeptidase active fraction (AAF) derived from the common squid Todarodes pacificus hepatopancreas. The central composite design selected AAF/AAH ratio (X1, %) and hydrolysis time (X2, h) as independent variables, and the degree of hydrolysis (Y1) and bitterness (Y2) as dependent variables. The uncoded values of the multiple response optimization for independent variables were 3.4% for the AAF/AAH ratio and 9.2 h for the hydrolysis time. The predicted values of the yield and bitterness score of alcalase-AAF continuously treated anchovy hydrolysate (AAAH) under the optimized conditions were 68.9% and 4.6 points, respectively. Their measured values of 69.5% for yield and 4.6±0.5 points for bitterness were similar to the predicted values. The food components of AAAH were 91.4% (moisture), 7.5% (protein), 0.1% (lipid) and 0.6% (ash). The findings indicate the potential value for use as an anchovy seasoning base. The results also confirm that the bitterness of AAH was remarkably improved by AAF and implicates AAF derived from squid hepatopancreas as a good enzyme to catalyze reduced bitterness.

Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates

  • Rathnapala, Ethige Chathura Nishshanka;Ahn, Dong Uk;Abeyrathne, Edirisingha Dewage Nalaka Sandun
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.608-622
    • /
    • 2021
  • Bioactive peptides have great potentials as nutraceutical and pharmaceutical agents that can improve human health. The objectives of this research were to produce functional peptides from ovotransferrin, a major egg white protein, using single enzyme treatments, and to analyze the properties of the hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or α-chymotrypsin at 1% (w/v) level of substrate, and incubated for 0-24 h at the optimal temperature of each enzyme (protease 55℃, papain 37℃, elastase 25℃, trypsin 37℃, α-chymotrypsin 37℃). The hydrolysates were tested for antioxidant, metal-chelating, and antimicrobial activities. Protease, papain, trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well after 3 h of incubation, but it took 24 h with elastase to reach a similar degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase were selected as the best products to analyze their functional properties. None of the hydrolysates exhibited antioxidant properties in the oil emulsion nor antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with α-chymotrypsin and with elastase had higher Fe3+-chelating activities (1.06±0.88%, 1.25±0.24%) than the native ovotransferrin (0.46±0.60%). Overall, the results indicated that the single-enzyme treatments of ovotransferrin were not effective to produce peptides with antioxidant, antimicrobial, or Fe3+-chelating activity. Further research on the effects of enzyme combinations may be needed.

Quality characteristics of soybean cheese prepared with low lipoxidase soybean variety and defatted soybean meal by fermenting after proteolytic enzyme hydrolysis (진품콩과 탈지대두박의 배합비율 및 단백분해효소처리를 달리하여 제조한 콩치즈의 품질특성)

  • 최애진;이숙영
    • Korean journal of food and cookery science
    • /
    • v.17 no.1
    • /
    • pp.65-79
    • /
    • 2001
  • The effects of ${\alpha}$-chymotrypsin and trypsin treatments on the functional properties (degree of hydrolysis, solubility, and emulsifying capacity) of the soy protein isolate prepared from Jinpum soybean milk(JS milk) which has been developed as low lipoxidase-active soybean variety in Korea and extracted from commercially defatted soybean meal milk(DSM milk). The mixing ratios of JS milk to DSM milk were adjusted to 10:0, 7:3, and 5:5, respectively. The general quality attributes(yield, pH, titrable acidity, moisture contents, crude protein contents, color, textural properties, and sensory characteristics) of soybean cheese which has been prepared with the resulting soy protein hydrolysates were evaluated. Jinpum SPI was better subjected to trypsin than ${\alpha}$-chymotrypsin hydrolyses as indicated by better solubility and emulsifying capacity of the hydrolysates. The degree of hydrolysis and solubility of Jinpum SPI were higher than the soybean isolates from DSM milk. The increased ratios of DSM milk in the mixture resulted in the reduced yields and crude protein content along with the lowered titratable acidity while the pH values and moisture contents showed the opposite trends. In color characteristics, the increased amount of DSM milk brought about the significantly lower Hunter color reflectance values of lightness of the cheese products, along with the higher redness and total color difference value(ΔE). However, the enzyme treatment alone was not enough to cause any color differences. The increased ratios of DSM milk also caused the significantly lowered textural parameters such as hardness, adhesiveness and cohesiveness of the soybean cheese. Between the enzyme treatments, the ${\alpha}$-chymotrypsin treated samples resulted in the higher hardness and cohesiveness values of the products than those from the trypsin-treated ones. In organoleptic properties of the product, the better mouthfeel and overall quality scores were obtained from the trypsin treatments as compared with those from the ${\alpha}$-chymotrypsin ones. The mixing ratios of 10:0 and 7:3 were more favored than that of 5:5 as far as mouth-feel, yellowness and overall quality of the products were concerned. On the overall, the mixing ratio of 7:3(JS milk: DSM milk) and the trypsin treatment of the mixture was recommended for better manufacturing of high-quality soybean cheese.

  • PDF

Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis (고압처리와 단백질 분해효소를 이용한 연산오계 다리육 펩타이드 생산 최적화 및 특성 분석)

  • Ha, Yoo-jin;Kim, A-Yeon;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.182-191
    • /
    • 2016
  • The purpose of this research was the optimization of protein hydrolysate production using a commercial enzyme bromelain 1200 derived from the leg of Yeonsan Ogae by response surface methodology. Yeonsan Ogae has long been known as supporting health and high efficacy treatment. In recent days, as the efficacy of functional peptides becomes more known, optimization of oligopeptide production and its characteristics from Ogae leg meat has been performed. Response surface methodology was performed for optimization of enzyme hydrolysis. The process was varied in pressure (30 to 100 MPa), time (1 to 3 h), and substrate concentration (10 to 30%). The degree of hydrolysis, amino acids, and molecular weight of products were analyzed. The optimum conditions were determined to be a pressure of 100 Mpa, time of 3 h, and substrate concentration of 20%. Under optimized conditions, degree of hydrolysis was 34.10%. The average molecular weight of protein hydrolysates was less than 1,000 Da. Major amino acids were leucine, lysine, alanine, glutamic acid, and phenylalanine.

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein (유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성)

  • Woo, Sung-Ho;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.633-639
    • /
    • 2009
  • The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.