• Title/Summary/Keyword: Hydrolysis Resistance

Search Result 87, Processing Time 0.024 seconds

Synthesis and Permeability of Cationic Polycarbonate-Polyurethane (양이온성 폴리카보네이트-폴리우레탄의 합성과 분리특성)

  • Lee, Snag-Woo;Oh, Boo-Keun;Lee, Young-Moo;Noh, Si Tae;Kim, Kea-Yong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-62
    • /
    • 1990
  • Cationic polycarbonate type polyurethane was prepared from the quaternization reaction of N-methyldiethanolamine(MDEA) in urethane backbone which was obtained from the reaction of polycarbonate polyol, MDI and MDEA(chain exetender). Tensile strength and modulus of the cationic urethane resins were increased sharply with increasing the ionic content in urethane backbone. But hydrolysis resistance was decreased with increasing ionic contents. The selectivity of the cationic polycabonate urethane membrane for water/ethanol separation by pervaporation was about 20. The carrier mediated transport mechanism was considered the most probable separation mechanism for these membranes.

  • PDF

Draft genome sequence of Lactobacillus salivarius KLW001 isolated from a weaning piglet (이유자돈으로부터 분리한 Lactobacillus salivarius KLW001의 유전체 분석)

  • Jin, Gwi-Deuk;Lee, Jun-Yeong;Kim, Eun Bae
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.134-136
    • /
    • 2017
  • Lactobacillus salivarius KLW001, a species of lactic acid bacteria (LAB), was isolated from a weaning piglet in a swine farm, South Korea, to develop an antimicrobial probiotic strain for piglets. Herein, we report the draft genome sequence of the strain. The genome contains 2,326,706 bp with a G+C content of 33.0% in 166 contigs (${\geq}500bp$). From the genome, we found out 4 genes related to antibiotic resistance, 36 genes for phages, 3 genes for bile hydrolysis, and 27 CRISPR spacers.

Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress (구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1 and P. migulae MS2 have several mechanisms of copper resistance and plant growth promoting capability, and also can alleviate abiotic stress in plant by hydrolysis of a precursor of stress ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC deaminase. In 4-week pot test for tomato growth in soil contained 700 mg/kg Cu, inoculation of MS1 and MS2 significantly increased root and shoot lengths, wet weight and dry weight of tomato plants compared to those of uninoculated control. The inoculated tomato plants contained less amounts of proline that can protect plants from abiotic stress, and malondialdehyde, an oxidative stress marker than those of control. ACC synthase genes, ACS4 and ACS6, and ACC oxidase genes, ACO1 and ACO4, both involved in ethylene synthesis, were strongly expressed in Cu stressed tomato, whereas significantly reduced in tomato inoculated with MS1 and MS2. Also, a gene encoding a metal binding protein metallothionein, MT2 showed similar expression pattern with above genes. All these results indicated that these rhizobacteria could confer Cu resistance to tomato plant under Cu stress and allowed a lower level of Cu stress and growth promotion.

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve (메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성)

  • Choi, Jong Hwa;Jeong, Soon Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.675-682
    • /
    • 2005
  • Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of $H_2SiF_6$ and $Al(NO_3)_3{\cdot}9H_2O$. The material obtained was characterized by XRD, $N_2$-physisorption. The specific surface area was $981m^2/g$, and the average pore size was uniformity $39{\AA}$. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of $NH_3$-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

THE STUDY OF CHANGE IN SURFACE HARDNESS AND TEXTURES OF COMPOSITE RESIN DUE TO ENZYMATIC ACTION (수종 복합레진에 있어서 효소 역할에 의한 표면 경도와 조도 변화에 관한 연구)

  • Kim, Mi-Ri;Lee, yung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.193-213
    • /
    • 1995
  • The purpose of this study is to investigate a possible contribution of nonspecific esterases, which occur in the oral cavity, to the degradation of ester bonds in polymethacrylates. One of the problems connected with the use of composite resins for restorations is their inadequate resistance to wear. It has been shown that methacrylate hydrolysis can be catalyzed by enzymes and that a carboxylic hydrolase (porcine liver esterase) catalyzed the hydrolysis of several mono - and dimethacrylates. The softening effect on a BISGMA/TEGDMA polymer induced by hydrolase will accelerate the in vivo wear of the polymer. Porcine liver esterase (EC 3.1.1.1) 3.2 mol/L $(NH_4)_2$ $SO_4$ was obtained from Sigma Chemical Company. The esterase activity of one unit is defined as the amount of enzyme capable of hydrolyzing $l{\mu}mol$ ethyl butyrate per min at pH 8.0 AT $25^{\circ}C$. Phosphate buffer, 10mmol/L, pH 7.0, was made by adjustment of a solution of $Na_2HPO_4$ with $H_3PO_4$. Composite resins used in this study are Silux Plus, Z-100, Durafil VS, and Prisma APH. Cylindrical specimens, 14mm in diameter and 3mm thick, of Silux Plus, Z-100, Durafil VS, Prisma APH were polymerized under the celluloid strip. 60 specimens were divided into 2 groups. One group was emersed only in buffer solution, the other group was emersed in buffer and enzyme solution. Silux Plus and Z-100 were divided into 2 subgroups, one subgroup was cured only Visilux 2. And the other subgroup was cured Visilux 2 and Triaid II. Thereafter, specimens were polished to its best achievable surface according to manufacture's directions. The Vickers hardness of the specimens was measured after 1, 2, 4, 7, 9, 15, 50 days. The solutions were changed after each measurement. Composite resin surfaces were evaluated for the surface roughness with profilometer (${\alpha}$-step 200, Tencor instruments, USA) after 1 and 50 days. And then surfaces of specimens were pictured with stereosopy after 1 and 50 days. The results were as follows. 1. The surface hardness of Silux plus, durafil VS, and Prisma APH were decreased with time. But, the surface hardness of Z-100 was not decreased. 2. The surface hardness of all composite resins was decreased by esterase. 3. Composite resins, which were light-cured by Visilux 2 and concomitantly baked by oven, showed more hardened surface than light-cured by Visilux 2 only. 4. Significant surface changes were occured in Silux plus after esterase treatment.

  • PDF

Synthesis and Mechanical, Dyeable Properties of Polyurethane with the Chain Extender Containing Tertiary Amine (3차 아민계 쇄연장제를 이용한 폴리우레탄 수지의 합성과 기계적, 염색 특성)

  • Noh, Si-Tae;Kim, Pyung-Jun;Jung, Chang-Nam
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.341-349
    • /
    • 1996
  • To improve the dyeability of polyurethane (PU) resin, low molecular weight diols containing dye site in the molecular structure was added as a chain-extender. PU resin were synthesized with the variations in the chain extender, polyol type, and hard segment/soft segment (HS/SS) ratio. When HS/SS ratio is 1.4 and dimethylolpropionic acid(DMPA) or N-butyldiethanolamine (BDEA) was used as a chain extender, because of heterogeneity of reaction mechanical properties were diminished. But when N-methyldiethanolamine (MDEA) was used as a DCE, and HS/SS ratio lowed to 1.3, mechanical properties and dyeability improved. In particular, when linear type 1,4-BD was formulated with MDEA, hydrolysis resistance and mechanical properties of PTMG type PU was improved. And initial elasticity, tensile strength and elongation could be controlled by the variation of HS/SS ratio, DCE mixing ratio of 1,6-HD or NPG.

  • PDF

Enzymes involved in folate metabolism and its implication for cancer treatment

  • Kim, Sung-Eun
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue;Liu, Defu;Liu, Ziwen;Liang, Yimin;Wang, Yanhong;Liu, Qingpeng;Liu, Zhenhua;Zang, Zhongjing;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.982-995
    • /
    • 2020
  • A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast - III. Isolation and characterization of fusant between S. diastaticus and C. tropicalis (Amylase분비효모와 alcohol발효효모의 세포융합에 의한 균주의 개발 - 제3보. S. diastaticus와 C. tropicalis 간의 세포융합 및 융합체의 성질-)

  • 서정훈;권택규;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.359-363
    • /
    • 1986
  • S. diastaticus hydrolysised $\alpha$-1.4 linkage of the starch and was known fermenting yeast strain, but poorly hydrolized $\alpha$-1.6 linkage of the starch. To improve the starch fermentation ability of yeast, we tried that protoplast fusion between S. diastaticus and C. tropicalis and finally two starins of fusant (FPDC42, FPDC43) were obtained. C. tropicalis well hydrolysis both $\alpha$-1.4 and $\alpha$-1.6 linkanges in the starch. The protoplast of parental auxotrophic cells were fused in the presence of 10mM CaCl$_2$ and 35% of polyethylene glycol (M. W. 4,000). The fusion frequency was 10$^{-5}$ to 10$^{-6}$. Properties of the fusants(genetic stability, assimilation of carbon sources, random spore formation, copper resistance, NaCl tolerance, DNA content, cell size and growth rate) were investigated.

  • PDF

Hepatoprotective Effects of Various Enzyme Hydrolysates from Oysters on Tacrine-Induced Toxicity in Human Hepatoma Cells (타크린으로 유발한 간세포 독성에 대한 효소별 굴 가수분해물의 보호 효과)

  • Park, Hye-Jin;Do, Hyung-Joo;Kim, Ok-Ju;Kim, Andre;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This study investigated the potential hepatoprotective benefits of Crassostrea gigas oyster hydrolysates. Oysters are known to have many biofunctional properties. In particular, oyster enzymatic hydrolysates produce substances with beneficial functions. The potential hepatoprotective effects of C. gigas hydrolysates against damage induced by tacrine were evaluated in vitro in HepG2 cells. Peptides were generated from C. gigas by enzymatic hydrolysis with Neutrase, Flavourzyme, or Protamex enzyme preparations. Tacrine treatment induced considerable cell damage in HepG2 cells, as shown by significant leakage of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH). Cells treated with C. gigas hydrolysates showed an increased resistance to oxidative challenge compared to control cells, as revealed by higher cell survival against tacrine-induced hepatotoxicity. In addition, treatment with C. gigas hydrolysates reduced the leakage of GOT and LDH. These findings indicate that enzyme hydrolysates derived from C. gigas may be of benefit for developing hepatoprotective foods and drugs.