• 제목/요약/키워드: Hydrolysis Process

검색결과 549건 처리시간 0.024초

Pilot 규모 산성가스 제거공정 운전 특성 (Operation Characteristics of Pilot-scale Acid Gas Removal Process)

  • 이승종;류상오;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

잉여슬러지의 열적가용화를 통한 가용화 및 혐기성소화 생분해도 향상 (Enhancement of Anaerobic Biodegradability and Solubilization by Thermal Pre-treatment of Waste Activated Sludge)

  • 정성엽;정석영;장순웅
    • 신재생에너지
    • /
    • 제10권1호
    • /
    • pp.20-29
    • /
    • 2014
  • The present study investigated the effects of thermal pre-treatment on the enhancement of anaerobic biodegradability of waste activated sludge at varied TS concentration levels. The activated sludges were thermally oxidized for 30 minutes at $80{\sim}200^{\circ}C$ with varied TS concentrations (2%, 4% and 6%). and then, sludge characteristics, solubilization efficiency and methane production yield of thermally pre-treated sludges were analyzed. The higher the temperature in the thermal pre-treatment, the higher the concentration levels of dissolved matters such as $SCOD_{Cr}$, $NH_4{^+}$ and VFAs, which indicates that the thermal pre-treatment facilitates the hydrolysis and acid fermentation. Furthermore, the solubilization efficiency was increased in proportion to the temperature rise at all TS concentrations and was reached at 68.9%, 55.6% and 53.1%, respectively, at $200^{\circ}C$. In the BMP test of the pre-treated sludges, higher methane production yields were observed as 0.313. 0.314 and $0.299m^3\;CH_4/kg\;VS_{add}$ at the condition of TS 2% ($160^{\circ}C$), 4% ($160^{\circ}C$) and 6% ($180^{\circ}C$), respectively, and degradation rate was increased by 84%, 79% and 65% compared with non-pretreated waste activated sludge. These findings suggest the effectiveness of thermal pre-treatment of waste activated sludge for anaerobic biodegradable process.

폴리아크릴산이 그라프트된 다공성 폴리우레탄막을 통한 약물의 방출조절 (Controlled Drug Delivery through Poly(acrylic acid-g-urethane) Porous Membrane)

  • 김진홍;이영무;정창남
    • 공업화학
    • /
    • 제3권2호
    • /
    • pp.296-304
    • /
    • 1992
  • 본 연구에서는 pH 및 용매조성의 변화에 따라 투과도가 변화하는 고분자막을 제조하고자 다공성 폴리우레탄 대칭막을 상전이법에 의해서 제조하고 다공성 대칭막의 표면에 친수성 고분자를 그라프트시켰다. 다공성 대칭막은 응고조로 DMSO/메탄올을 이용하여 얻을 수 있었다 또한 ceric ammonium nitrate (CAN)를 이용하여 다공성 대칭막 표면에 폴리아크릴아미드를 그라프트시키고, 가수분해하여 폴리아크릴산이 그라프트된 다공성 대칭막을 얻었다. 친수성 고분자가 그라프트된 고분자막을 통한 pH 및 용매조성의 변화에 따른 투과도의 변화를 비타민 $B_2$인 리보플라빈을 이용하여 검토하였다. pH에 따른 투과도의 변화는 폴리아크릴산이 그라프트된 경우 pH가 감소함에 따라 투과도는 증가하였으며 또한 용매조성에 따른 투과도의 변화는 비용매에 대한 용매의 양이 증가함에 따라서 증가하였다.

  • PDF

Characterization and Application of a Novel Thermostable Glucoamylase Cloned from a Hyperthermophilic Archaeon Sulfolobus tokodaii

  • Njoroge, Rose Nyawira;Li, Dan;Park, Jong-Tae;Cha, Hyun-Ju;Kim, Mi-Sun;Kim, Jung-Wan;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.860-865
    • /
    • 2005
  • A gene for a putative glucoamylase, stg, of a hyperthermophilic archae on Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The recombinant glucoamylase (STGA) had an optimal temperature of $80^{\circ}C$ and was extremely thermostable with a D-value of 17 hr. The pH optimum of the enzyme was 4.5. Being different from fungal glucoamylases, STGA hydrolyzed maltotriose (G3) most efficiently. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis showed that the enzyme existed as a dimer. STGA was stable enough to hydrolyze liquefied com starch to glucose in 4 hr at $90^{\circ}C$ with a yield of95%. Comparison of the $k_{cat}$ values for the hydrolysis and the reverse reaction at $75^{\circ}C$ and $90^{\circ}C$ indicated that glucose production by STGA was more efficient at $90^{\circ}C$ than $75^{\circ}C$. Therefore, STGA showed great potential for application to the industrial glucose production process due to its high thermostability.

당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화 (Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production)

  • 유하영;김성봉;이상준;이자현;서영준;김승욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

음료용 동치미 제조 (Dongchimi Fermentation for Drinks)

  • 안용근
    • 한국식품영양학회지
    • /
    • 제14권1호
    • /
    • pp.46-51
    • /
    • 2001
  • 마쇄한 무를 30%사용하여 당질을 가하지 않은 동치미, 전분을 1% 가한 동치미, 설탕을 1% 가한 동치미를 담가 4$^{\circ}C$에서 30일간 발효시켰다. HPLC 및 TLC 분석결과 전분을 가하지 않은 동치미에는 글루코오스, 프룩토오스, 수크로오스가 있었고, 발효진행에 따라 이들이 함량이 낮아졌다. 전분을 가한 동치미는 아밀라아제의 작용으로 이들 당 외에 말토오스, 말토트리오스, 말토테트라오스가 생성되었다. 수크로오스를 가한 동치미는 글루코오스, 프룩토오스, 수크로오스가 나타났다. 당질을 가하지 않은 동치미는 30일 발효후 환원당 53 $\mu$g/ml, 아밀라아제 활성 0.012unit/ml, pH 3.84, 산도 1.8을 나타냈다. 전분 1%를 가한 동치미는 환원당 173$\mu$g/ml, 아밀라아제 활성 0.019unit/ml, pH 3.87, 산도 2.1을 나타냈다. 수크로오스 1%를 가한 동치미는 환원당 211$\mu$g/ml, 아밀라아제 활성 0.015unit/ml, pH 3.36, 산도 2.4를 나타냈다.

  • PDF

피마자 단백질의 식품화를 위한 연구 (Studies on the Preparation of Food Proteins from Castor Bean Protein)

  • 윤주억
    • 한국식품과학회지
    • /
    • 제12권4호
    • /
    • pp.263-271
    • /
    • 1980
  • 피마자박 단백질을 사료 또는 식품화 하기 위하여 탈지 피마자박으로부터 독성분이 완전하게 제거된 단백질을 만들었다. 이 피마자 단백질의 용해도는 ${\varepsilon}$-아미노기의 숙시닐화 및 아세틸화로 $pH\;7{\sim}8$에서 현저하게 증가하였다. 아미노산 분석결과, 황-함유 아미노산과 L-리신이 제한 아미노산이었고, 아실화 과정은 아미노산 함량에 약간의 손실을 주었다. 파파인을 이용한 1 단계법 plastein 반응으로 피마자 단백질 또는 아실화 피마자 단백질과 DL-메티오닌 에틸 에스테르로부터 L-메티오닌 강화 피마자 단백질을 합성하였고, 이 방법으로 L-메티오닌 도입율은 50%였다. 피마자 단백질 및 수식된 피마자 단백질의 펩신에 의한 소화율은 모두 92% 정도였으나, 트립신에 의한 소화율은 숙시닐화 및 아세틸화 단백질이 현저하게 떨어져서 각각 42% 및 26%였다. 피마자 단백질의 단백질 효율은 L-메티오닌 강화로 카제인의 단백질 효율의 90%까지 향상되었으나, 피마자 단백질을 숙시닐화 및 아세틸화 하면 단백질 효율은 감소되어, 각각 카제인의 55% 및 69%였다.

  • PDF

황산/글루코스 용액으로부터 전기투석에 의한 황산 분리 (Separation of Sulfuric Acid from Sulfuric Acid/Glucose Solution by Electrodialysis)

  • 이세훈;김영숙;추천호;나일채;오용환;박권필
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.7-12
    • /
    • 2017
  • 황산에 의한 바이오매스의 당화 후 황산의 회수는 매우 중요하다. 본 연구에서는 전기투석 방법에 의해 황산과 글루코스 혼합용액으로부터 황산을 분리하는 연구를 하였다. 전기투석은 음이온막과 양이온막을 사용한 3실 방식이 일반적인데 본 연구에서는 음이온막 만을 사용한 2실 방식을 실험했다. 글루코스 10~30% 황산농도 1~3 M 농도 범위의 용액에서 2실 방식의 전기투석으로 황산을 완전 분리할 수 있었다. 실험한 3종류의 음이온 막 중에서 확산과 대류의 영향이 작은 음이온 막에서는 전류밀도에 비례해 황산분리 속도가 증가하였다. 전기를 가하지 않고 확산과 대류에 의해 황산분리 45%를 달성할 수 있었다.

고려인삼의 화학성분에 관한 고찰 (Recent Studies on the Chemical Constituents of Korean Ginseng (Panax ginseng C. A. Meyer))

  • 박종대
    • Journal of Ginseng Research
    • /
    • 제20권4호
    • /
    • pp.389-415
    • /
    • 1996
  • Panax ginseng C.A. Meyer(Araliaceae) has been traditionally used as an expensive and precious medicine in oriental countries for more than 5, 000 years. Ginseng saponin isolated from the root of Panax ginseng have been regarded as the main effective components responsible for the pharmacological and biological activities. Such as antiaging effects. antidiabetic effects anticancer effects. Protection against physical and chemical stress. Analgesic and antipyretic effects. Effects on the central nervous system, tranquilizing action and others. Thirty kinds of ginsenosides have been so far isolated from ginseng saponin and their chemical structures have been elucidated since 1960's. Among which protopanaxadiol type is 19 kinds. protopanaxatriol type. 10 kinds and oleanane type, one. Since ginsenosides are generally labile under acidic conditions ordinary acid hydrolysis is always accompanied by many side reactions, such as epimerization. hydroxylation and cyclization of side chain of the sapogenins Especially. it is well known that C-20 glycosyl linkage of ginsenoside was hydrolysed on heating with acetic acid to give an equilibrated mixture of 20(S) and 20(R) epimers. And also, the chemical transformations of the secondary metabolites have appeared during the steaming process to prepare red ginseng. Indicating demalonylation of malonyl ginsenosides, elimination of glycosyl residue at C-20 and isomerization of hydroxyl configuration at C-20. But these studies have not provided a comprehensive picture in explaning how these ginsenosides showed val'iotas pharmacological activities of ginseng. Though some of them have been involved in the mechanism of pharmacological actions. Recently, non-saponin components have received a great deal of attention for their antioxidant, anticancer antidiabetic, immunomodulating. anticomplementary activities and so on. To meet the demand for such wide applications, studies on the non-saponin components play an important role in providing a good evidence of pharmacological and biol ogical activities. Among the non-saponin constituents of Korean ginseng, polyacetylenes, phenols. Sesquiterpenes, alkaloids. polysaccharides oligosaccharides, oligopeptides and aminoglycosides together with ginsenosides of terrestrial part are mainly described.

  • PDF

Tyromyces palustris의 수산생성효소인 Oxaloacetase와 목질 분해와의 관계 구명 (Evaluation on Relations between the Oxalic Acid Producing Enzyme, Oxaloacetase from Tyromyces palustris, and Wood Decaying Activity)

  • 손동원;이동흡;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.48-53
    • /
    • 1996
  • Brown rot fungus, Tyromyces palustris, has been reported to cause the loss of strength accelerated by oxalate, a non-enzymatic low molecular weight acid, with minute weight loss of decaying wood in early stage. The production of oxalate in relation to wood decaying and the presence of oxaloacetase. an oxalate producing enzyme, were identified during the process. Tyromyces palustris produced the largest amount of oxalate among brown rot fungi. In order to find out the cleavage of pulp fiber, we submerged pulp fiber in oxalate solution and the results showed that the number of short pulp fiber was highly increased, compared with control solution. The pH of decaying wood was decreased to 1.77 which was close to that of saturated oxalate solution, pH 1.2, Thus, the oxalate was thought to be accumulated in the decaying wood, The oxaloacetase which accelerates production of oxalate was derived from fungus, and the production of oxalate by the enzyme was determined by using on UV/Vis spectrophotometer. Therefore, the oxalate was found to be produced by oxaloacetase during decay. The oxalate may cause the acid-hydrolysis of cellulose and hemicellulose. The oxalate was thought to reduce the degree of polymerization and increase the enzyme activity, which resulted in rapid loss of strength in early stage-an identical feature of brown rot fungus.

  • PDF