• Title/Summary/Keyword: Hydrological impact

Search Result 238, Processing Time 0.025 seconds

Assessing the impact of urbanization on runoff and non-point source pollution using the GIS L-THIA (GIS L-THIA를 이용한 도시화에 따른 유출과 비점원오염 영향 평가)

  • Yun, La-Young;Kim, Dong-Hui;Gwon, Hyeok-Hyeon;Sin, Seung-Cheol;Son, Kwang-Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1802-1806
    • /
    • 2006
  • It is important to consider the effects of land-use changes on surface runoff, stream flow, and groundwater recharge. Expansion of urban areas significantly impacts the environment in terms of ground water recharge, water pollution, and storm water drainage. Increase of impervious area due to urbanization leads to an increase in surface runoff volume, contributes to downstream flooding and a net loss in groundwater recharge. Assessment of the hydrologic impacts or urban land-use change traditionally includes models that evaluate how land use change alters peak runoff rates, and these results are then used in the design of drainage systems. Such methods however do not address the long-term hydrologic impacts of urban land use change and often do not consider how pollutants that wash off from different land uses affect water quality. L-THIA (Long-Term Hydrologic Impact Assessment) is an analysis tool that provides site-specific estimates of changes in runoff, recharge and non point source pollution resulting from past or proposed land-use changes. It gives long-term average annual runoff for a land use configuration, based on climate data for that area. In this study, the environmental and hydrological impact from the urbanized basin had been examined with GIS L-THIA in Korea.

  • PDF

Analysis of Land Use Change Impact on Storm Runoff in Anseongcheon Watershed

  • Park, Geun-Ae;Jung, In-Kyun;Lee, Mi-Seon;Shin, Hyung-Jin;Park, Jong-Yoon;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of upstream watershed of Pyeongtaek gauging station of Anseong-cheon. WMS HEC-1 was adopted, and OEM with 200 m resolution and hydrologic soil group from 1:50,000 scale soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased and urban/residential area gradually increased during the four selected years. The model was calibrated at 2 locations (Pyeonglaek and Gongdo) by comparing observed with simulated discharge results for 5 summer storm events from 1998 to 2001. The watershed average CN values varied from 61.7 to 62.3 for the 4 selected years. To identify the impact of streamflow by temporal area change of a target land use, a simple evaluation method that the CN values of areas except the target land use are unified as one representative CN value was suggested. By applying the method, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

Quantitative Analysis of Human Impact on River Runoff in the Laohahe Basin through the Conceptual Xin'anjiang Model

  • Ren, Liliang;Vu, Van Nghi;Yuan, Fei;Li, Chunhong;Wang, Jixin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.15-21
    • /
    • 2007
  • Due to a decreasing tendency of river runoff in the Laohahe River basin in North China, quantitative analysis was made with the aid of the conceptual Xinanjiang model under the background of nature climate variability as well as human-induced climate change according to the long-term observational hydrometeorological data. In the past, the human effect on surface water resources was estimated by investigating the impact of human activities on each item in the equation of water balance, so as to calculate water quantity of each item in the original natural status. It seems to be clear conceptually. It is appropriate just for the case of direct impact, such as water transfer from one basin to another, water storage by various scales of hydraulic projects, besides a huge amount of investigation and indeterminate statistics data when applied in practice. It is difficult for us to compute directly water consumption due to the implementation of measures for soil conservation, the improvement of farming techniques in agriculture, the growth of population in towns and villages, and the change of socioeconomic structure. In view of such situation, the Xinanjiang model was used to separate human impact from the climatic impact on water resources. Quantitatively human activity made river runoff decrease by 1.02, 50.67, 58.06 mm in 1960's, 1970's, 1980's, respectively, while by 97.2 mm in 1990's in the sense of annual average in the Laohahe River basin.

  • PDF

Analysis of Disaster Vulnerable Districts using Heavy Rainfall Vulnerability Index (폭우 취약성 지표를 활용한 재해취약지구 분석)

  • PARK, Jong-Young;LEE, Jung-Sik;LEE, Jin-Deok;LEE, Won-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.12-22
    • /
    • 2018
  • In order to improve the vulnerability of current cities due to climate change, the disaster vulnerability analysis manual for various disasters is provided. Depending on the spatial units, the disaster vulnerability levels, and the conditions of the climatic factors, the results of the disaster vulnerability analysis will have a significant impact. In this study, relative assessments are conducted by adding the eup, myeon and dong unit in addition to census output area unit to analyze the impact on the spatial unit, and relative changes are analyzed according to the classification stages by expanding the natural classification, which is standardized at level four stage, to level two, four and six stage. The maximum rainfalls(10min, 60min, 24hr) are added for the two limited rainfall characteristics to determine the relativity of disaster vulnerable districts by index. The relative assessment results of heavy rainfall vulnerability index showed that the area ratio of disaster areas by spatial unit was different and the correlation analysis showed that the space analysis between the eup, myeon and dong unit in addition to census output area unit was not consistent. And it can be seen that the proportion of disaster vulnerable districts is relatively different a lot due to indexes of rainfall characteristics, spatial unit analysis and disaster vulnerability level stage. Based on the above results, it can be seen that the ratios of disaster vulnerable districts differ relatively significantly due to the level of the disaster vulnerability class, and the indexes of rainfall characteristics. This suggests that the impact of the disaster vulnerable districts depending on indexes is relatively large, and more detailed indexes should be selected when setting up the disaster vulnerabilities analysis index.

Worries and Reality Regarding Porous Asphalt Pavements: Structural Integrity, Flood Mitigation and Non-Point Pollution Reduction (투수성 아스팔트 포장에 대한 우려와 실제: 구조적 적합성, 홍수 완화 그리고 비점오염 저감)

  • Yoo, Inkyoon;Lee, Suhyung;Han, Daeseok;Lee, Sanghyuk
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.272-278
    • /
    • 2016
  • Porous pavements are recommended as a Low-Impact Development (LID) method which is a strategy to develop a water cycle as close to a natural state as possible, and to solve the urban impervious surface problems. Porous pavements can yield a solution if it provides a more permeable surface with extra space to contain extra water from building roofs. But there are few applications in Korea because of a lack of recognition and experience. Highway engineers are mainly concerned about the infiltration of water into pavement structures. They worry about the weakening of the asphalt mixture and subgrade, and freezing during the winter season due to the infiltration of water. Meanwhile, hydrological experts doubt the effects of the amount of water to control during the flooding season, and environmental experts prefer a non-point pollution treatment system established beside highway. In this study, from reviewing the history and the body of literature about porous pavements, conclusions regarding the most advanced technologies were made. First, traditional thickness designs can be used for porous pavement, no extra distresses was found by weakening and freezing during the winter season. Second, hydrological design can be made by controlling the thickness of the pavement and the outlet of water. Third, the treatment efficiency of non-point pollution of porous pavements is not worse than any other method. Importantly, it's a more eco-friendly solution because of its lower requirement for de-icing agents.

Analysis of Hydrological Impact for Long-Term Land Cover Change Using the WMS HEC-1 Model in the Upstream Watershed of Pyeongtaek Gauging Station of Anseong-cheon (WMS HEC-1을 이용한 안성천 평택수위관측소 상류유역의 수문 경년변화 분석)

  • Kim, Seong-Joon;Park, Geun-Ae;Jung, In-Kyun;Kwon, Hyung-Joong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.609-621
    • /
    • 2003
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of upstream watershed of Pyeongtaek gauging station of Anseong -cheon. WMS HEC-1 was adopted, and DEM with 200$\times$200m resolution and hydrologic soil group from 1:50,000 soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased and urban/residential area gradually increased for the period of 14 years. The model was calibrated at 2 locations (Pyeongtaek and Gongdo) by comparing observed with simulated discharge results for 5 summer storm events from 1998 to 2001. The watershed average CN values varied from 61.7 to 62.3 for the 4 selected years. To identify the impact of streamflow by temporal area change of a target land use, a simple evaluation method that the CN values of areas except the target land use are unified as one representative CN value was suggested. By applying the method, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

Quantitative uncertainty analysis for the climate change impact assessment using the uncertainty delta method (기후변화 영향평가에서의 Uncertainty Delta Method를 활용한 정량적 불확실성 분석)

  • Lee, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1079-1089
    • /
    • 2018
  • The majority of existing studies for quantifying uncertainties in climate change impact assessments suggest only the uncertainties of each stage, and not the total uncertainty and its propagation in the whole procedure. Therefore, this study has proposed a new method, the Uncertainty Delta Method (UDM), which can quantify uncertainties using the variances of projections (as the UDM is derived from the first-order Taylor series expansion), to allow for a comprehensive quantification of uncertainty at each stage and also to provide the levels of uncertainty propagation, as follows: total uncertainty, the level of uncertainty increase at each stage, and the percentage of uncertainty at each stage. For quantifying uncertainties at each stage as well as the total uncertainty, all the stages - two emission scenarios (ES), three Global Climate Models (GCMs), two downscaling techniques, and two hydrological models - of the climate change assessment for water resources are conducted. The total uncertainty took 5.45, and the ESs had the largest uncertainty (4.45). Additionally, uncertainties are propagated stage by stage because of their gradual increase: 5.45 in total uncertainty consisted of 4.45 in emission scenarios, 0.45 in climate models, 0.27 in downscaling techniques, and 0.28 in hydrological models. These results indicate the projection of future water resources can be very different depending on which emission scenarios are selected. Moreover, using Fractional Uncertainty Method (FUM) by Hawkins and Sutton (2009), the major uncertainty contributor (emission scenario: FUM uncertainty 0.52) matched with the results of UDM. Therefore, the UDM proposed by this study can support comprehension and appropriate analysis of the uncertainty surrounding the climate change impact assessment, and make possible a better understanding of the water resources projection for future climate change.

A Study on the Master Plan of Natural Environment Conservation compared with National Biological Survey in USA (환경부 전국자연환경조사사업의 문제점과 개선방안 - 미국의 사례를 중심으로 -)

  • Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The Master Plan of Natural Environment Conservation in Korea by Ministry of Environment has been carried out since 1986. The 2nd 10-year survey started in 1997, and there are three major parts in the Master Plan : First, the basic natural environment survey, second, sites in special features of ecological characteristics such as uninhabitable islands, wetlands, etc, and third, biological species featuring status of habitat, and population dynamics. However the information in the Master Plan is very fragmented and collected data are not so abundant due to insufficient man-power and unsynchronized survey time/season. In this regard this paper examined the similar National Biological Survey in USA and compared the differences with the Master Plan in Korea. The Master Plan in Korea should separate the management zone based on hydrological characteristics, and in each zone we should set a management goal in the long term basis. Secondly the species list is not so meaningful that we must concentrate more on research activities. In each taxonomical group we set up hypotheses and research goals. Thirdly local residents and communities should be involved in research so that enhanced biological diversity should benefit people in areas. Lastly legislation and laws should be reexamined and rectified to provide information to the managers that deals with natural resources, expecially when conflicting with economic matters.

Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir (지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측)

  • Cha, Yoon Cheol;Chung, Se Woong;Yoon, Sung Wan
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

Evaluation of Economic Damage Caused by Drought in Central Region Vietnam: A Case Study of Phu Yen Province

  • Truong, Dinh Duc;Tri, Doan Quang
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.649-657
    • /
    • 2021
  • This paper aims to study the impact of natural disasters on per capita income in Vietnam both the short and long-term, specifically impact loss of income caused by the extreme drought 2013 for agriculture, forestry and fishery in Phu Yen Province, Central Vietnam. The study valued economic damage by applying the synthetic control method (SCM), which is a statistical method to evaluate the effect of an intervention (e.g. natural disasters) in different case studies. It estimates what would have happened to the treatment group if it had not received the treatment by constructing a weighted combination of control units (e.g. control provinces). The results showed that the 2013 drought caused a decrease in income per capita, mainly in the agriculture, forestry, and fishery sector in Phu Yen. The reduced income was estimated to be VND 160,000 (1 USD = 23,500 VND (2021)) for one person per month, accounting for 11% of total income per capita and continued to affect the income 6 years later. Therefore, authorities need to invest in preventive solutions such as early and accurate warnings to help people to be more proactive in disaster prevention.