• Title/Summary/Keyword: Hydrological

Search Result 1,818, Processing Time 0.031 seconds

Implementation of Hydrological Survey Scheduling using Real-Time Water Level Information (실시간 수위정보를 활용한 수문조사 스케줄링 구현)

  • Jae Myeong Choi
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.66-75
    • /
    • 2023
  • Hydrological survey measurement technology has improved due to the introduction of high-tech equipment and advances in technology, but hydrological survey still requires a lot of manpower and time, and the manpower invested is very limited compared to the size and scope of work. In addition, although automatic flow measurement facilities are in operation, it is difficult to expand them nationwide due to limited field conditions. Therefore, it is necessary to improve the operating infrastructure and environment rather than the measurement technology itself for hydrological investigation. In addition, in terms of flow investigation, it is necessary to schedule an investigation using real-time water level information in order to inventory the accuracy of the water-flow relationship equation and improve work efficiency. Therefore, in this paper, research related to domestic hydrological surveys was analyzed and a hydrological survey scheduling system using real- time water level information based on Open API was implemented to increase the economic and efficiency of hydrological surveys.

  • PDF

Hydrological Radar Network Simulation Model Considering Effective Flood Management and Control

  • Shin, Hyun-Suk;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.65-73
    • /
    • 2002
  • Weather Radar have played an important role in both precipitation observation and hydrological operations over several countries and evaluated its efficient and necessities for the developed flood management and control. This paper describe the factors influencing the design the hydrological radar network in Korea and develop Hydrological Radar Network Simulation Model (HRNSM) based on GIS and UI system. Moreover, the methodologies for geographical and hydrological feasibility analysis for radar network were provided in detail manner.

  • PDF

Development of Monthly Hydrological Cycle Assessment System Using Dynamic Water Balance Model Based on Budyko Framework (Budyko 프레임워크 기반 동적 물수지 모형을 활용한 월 단위 물순환 평가체계 개발)

  • Kim, Kyeung;Hwang, Soonho;Jun, Sang-Min;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.71-83
    • /
    • 2022
  • In this study, an indicator and assessment system for evaluating the monthly hydrological cycle was prepared using simple factors such as the landuse status of the watershed and topographic characteristics to the dynamic water balance model (DWBM) based on the Budyko framework. The parameters a1 of DWBM are introduced as hydrologic cycle indicators. An indicator estimation regression model was developed using watershed characteristics data for the introduced indicator, and an assessment system was prepared through K-means cluster analysis. The hydrological cycle assessment system developed in this study can assess the hydrological cycle with simple data such as land use, CN, and watershed slope, so it can quickly assess changes in hydrological cycle factors in the past and present. Because of this advantage is expected that the developed assessment system can predict changes in the hydrological cycle and use an auxiliary tool for policymaking.

Advances in Hydrological Science of China

  • Cheng, Lin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.111-114
    • /
    • 2010
  • In this report, introduction will be made in 5 respects including hydrometry technology, hydrological simulation, hydrometeorological research, hydrological analysis, and operational forecasting.

  • PDF

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

A Study on Hydrological Information Management by using Geo-Spatial Information System (지형공간정보체계를 이용한 수문정보관리에 관한 연구)

  • 유복모;장지원;한순석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 1994
  • This study aims to develop a hydrological information management system to manage the hydrological data of Han river integratedly. Various data related to hydrology such as water level, dams, the positions of the hydrological structures for Han river were collected and inputed to build the hydrological information management system. The Database Management System(DBMS) of Korea Water Resources Cooperation which is operated in the form of digits and characters was linked to the Geo-Spatial Information System to join positional information and digital information and to analyze the hydrological data using graphical techniques. Through this study, the positional errors which occurred when digital or characteristic informations were only used, were detected. And the hydrological information management system was presented to estimate the reliability of data related to water level among the hydrological information and to show the basis of output used to correct the data.

  • PDF

Hydrological observation system deployment for water Water quantity, quality management (수자원 수량, 수질관리를 위한 수문관측시스템 구축방안)

  • Yu, Se-hwan;Jang, Dong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.882-885
    • /
    • 2014
  • The duration and frequency of flooding and not last long, by the time climate change drought. The increased accordingly by reducing stream flow and year variation. This trend is expected to continue, and change towards a comprehensive analysis of such quantity, quality and management of water resources are managed. Flood warning system is called to perform them electronically to the management of water resources such as these to be in the organic water-related basic data acquisition, storage, processing and utilization. Can be divided into hydrological observations and flood warning systems alert system broadcast system. Hydrological observation system is the measurement from the hydrological stations (water level, rainfall, water) that can be observed hydrological status of the dam basin hydrological observation data transmitted to the central office, located at the dam monitoring and control system through a variety of networks including satellite, and the collected defined as the system that sent the K-water head office in 1 minute increments hydrological observation data. Headquartered in support of this decision. Dimensions of the dam are provided in addition to inward. Channeled through various hydrologic analysis and leveraging the data transfer. This paper looks at ways to build out hydrological observation system.

  • PDF

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • Kwon, Hyun-Han;Moon, Young-Il;Park, Se-Hoon;Oh, Tae-Suck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF

Study on the Cheonggyecheon through the hydrological monitoring and GIS (수문관측 및 GIS를 이용한 청계천 모니터링 연구)

  • Jeong, Chang-Sam;Bae, Deg-Hyo;Kim, Mun-Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1464-1468
    • /
    • 2007
  • The restoration project of Cheonggyecheon was conducted to creates the refreshing water-friendly environment in the downtown Seoul. It already have passed almost 2 years after restoration. This project changed environment of Cheonggyecheon dramatically, so historic hydrological data became useless. There are not so many hydrological data to manage and control this newly restored urban stream. The main purpose of this study is collecting and analysing the hydrological data of Cheonggyecheon. At first, we analysed the mechanism of Cheonggyecheon discharge using the sewage design maps and some GIS data. We also monitored the water levels and discharges of 5 main points of Cheonggyecheon. Rating curves of these 5 points were derived. There were 249 blocks of water gates which were located at both sides of bank. We also monitored the behaviors of these water gates. Through the these monitorings, some equations were derived to give useful information to the manager of Cheonggyecheon.

  • PDF