• 제목/요약/키워드: Hydrologic Soil Group

Search Result 29, Processing Time 0.024 seconds

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.

Study on SCS CN Estimation and Flood Flow Characteristics According to the Classification Criteria of Hydrologic Soil Groups (수문학적 토양군의 분류기준에 따른 SCS CN 및 유출변화특성에 관한 연구)

  • Ahn, Seung-Seop;Park, Ro-Sam;Ko, Soo-Hyun;Song, In-Ryeol
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.775-784
    • /
    • 2006
  • In this study, CN value was estimated by using detailed soil map and land cover characteristic against upper basin of Kumho watermark located on the upper basin of Kumho river and the hydrologic morphological characteristic factors were extracted from the basin by using the DEM document. Also the runoff analysis was conducted by the WMS model in order to study how the assumed CN value affects the runoff characteristic. First of all, as a result of studying the soil type in this study area, mostly D type soil was Identified by the application of the 1987 classification criteria. However, by that in 1995, B type soil and C type soil were distributed more widely in that area. When CN value was classified by the 1995 classification criteria, it was estimated lower than in 1987, as a result of comparing the estimated CNs by those standars. Also it was assumed that CN value was underestimated when the plan for Geum-ho river maintenance was drawn up. As a result of the analysis of runoff characteristic, the pattern of generation of the classification criteria of soil groups appeared to be similar, but in the case of the application of the classification criteria in 1995, the peak rate of runoff was found to be smaller on the whole than in the case of the application of the classification criteria in 1987. Also when the statistical data such as the prediction errors, the mean squared errors, the coefficient of determination and other data emerging from the analysis, was looked over in total, it seemed appropriate to apply the 1995 classification criteria when hydrological soil classification group was applied. As the result of this study, however, the difference of the result of the statistical dat was somewhat small. In future study, it is necessary to follow up evidence about soil application On many more watersheds and in heavy rain.

Hydrological Impect Evaluation Web-Based DSS for Local Community (지역공동체를 위한 수문/수질 평가 의사결정지원시스템)

  • Choi, Jin-Yong;Engel Bernard A.
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.2 s.16
    • /
    • pp.3-16
    • /
    • 2002
  • 의사결장지원시스템은 다양한 분야에 적용되어 왔으며, 그 중 수자원 및 수질 관련 분야에도 다각적으로 적용되어 왔다. 본 연구에서는 미 농무성의 자연자원보전국(NRCS, Natural Resources Conservation Service)에서 개발한 유출곡선법(Curve Number Method)과 EMC(Event Mean Concentration)을 사용한 L-THIA(Long-Term Hydrologic Impact Assessment) 수문/수질 모형을 강우자료 데이터베이스, 웹기반 지리정보시스템, 웹 사용자 편의 시스템과 통합한 수문/수질 L-THIA web 의사결정지원시스템을 개발하였다. L-THIA web은 도시계획가나 지방자치단체, 또는 지방의 공동체가 사용할 수 있도록 쉽고 단순한 사용자 편의 시스템을 제공하고 있으며, 미국의 50개 본토의 주와 카운티(County) 이름으로 기상자료와 수문토양분류(Hydrologic Soil Group)을 인터넷 지리정보시스템을 이용하여 제공하고 있다. 본 연구는 지방자치단체 및 지역공동체의 실무자를 사용자로 수문/수질 평가 및 관리를 위한 시스템으로 유용하게 활용될 수 있을 것으로 사료된다.

Construction of the Curve Number Estimation System Using Geographic Information System (GIS를 이용한 CN 산정시스템 구축)

  • Chae, Jong Hun.;Jeong, In Ju;Kim, Sang Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1262-1266
    • /
    • 2004
  • The current combining of computer and geographic information technology. The result of such research oil determinate objective factors of hydrologic-topographical parameters through joining hydrology and GIS(Geographic Information System). In this study, we wish to offer the base data to determinate hydrologic-topographical parameters request of runoff model analysis in this basin. First, we computed the CN(curve number) by using GIS, and then classify the digital map of soil group and landuse on the Sulma river basin. Second, we used Avenue Script to calculate the height of efficient GIS work before using the Clark model to work out flood runoff flow.

  • PDF

Suggestion of classification rule of hydrological soil groups considering the results of the revision of soil series: A case study on Jeju Island (토양통 개정 결과를 반영한 수문학적 토양군 분류 방법 제시: 제주도를 대상으로)

  • Lee, Youngju;Kang, Minseok;Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.35-49
    • /
    • 2019
  • This study proposes a new method for categorizing the hydrological soil groups by considering the recent revision results of soil series. Also, the proposed method is evaluated by comparing the categorizing result with those based on existing three different methods. As an example, the proposed method is applied to Jeju Island to estimate the CN value, which is then compared with CN values estimated by applying the existing three different methods. Summaries of the results are as follow. (1) The revision result since 2007 shows that the soil texture has been changed in the 43 soil series, the drainage class in the 1 soil series, the permeability in the 15 soil series, and the impermeable layer in the 26 soil series. (2) The categorizing result of hydrological soil groups by applying the proposed method shows that the group B is the most dominant group covering up to 49.25%. On the other hand, one of the existing method of 1987 provides the group C as the most dominant group (46.43%). Method of 1995 defines the group B as the most dominant group (27.69%). The other method of 2007 distinguishes the group D (35.82%) to be the most dominant group. (3) Also, the CN value estimated by applying the proposed method to Jeju Island is found to be smaller than those based on existing three methods. This result indicates the possible overestimation of the CN value when applying the existing three methods.

Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method (수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정)

  • Yoon, Kwang-Sik;Kim, Young-Joo;Yoon, Suk-Gun;Jung, Jae-Woon;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

A new classification rule of hydrological soil groups of Jeju Island: Application to representative basins and evaluation of previous studies (제주도의 새로운 수문학적 토양군 분류 방법: 대표 유역에 대한 적용 및 기존연구 평가)

  • Kang, Minseok;Lee, Youngju;Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1261-1271
    • /
    • 2018
  • This study evaluates the applicability of the classification rule of hydrological soil group proposed by Lee et al. (2018) with its application to three river basins (Jungmuncheon, Cheonmicheon, and Hancheon) in Jeju Island. The CN values are estimated as results of this application to these three basins, which is then compared with those estimated by applying the conventional three methods. Additionally, previous studies related with the classification of soil groups of Jesu Island, such as the infiltration and rainfall-runoff analysis, are reviewed to evaluate how the resulting hydrological soil groups vary depending on the adopted classification method.. Summarizing the results is as follows. (1) Comparison result of the hydrological soil groups of Jeju Island with respect to the classification method shows that the soil group B is dominant in the application of Lee et al. (2018). However, it is hydrological soil groups C and D in the application of Hu and Jung (1987), hydrological soil groups A and C in the application of Jung et al. (1995), and hydrological soil group D in the application of RDA (2007). (2) In all the applications of Lee et al. (2018) to three selected river basins in Jeju Island, the CN valuse are found to be smaller than those by other conventional three methods.. Lastly, (3) The evaluation results of previous studies related with the classification of hydrological soil groups analysis in Jeju Island shows that the CN value in the Jeju Island may be smaller than those estimated by conventional three methods, also the initial loss higher than 0.2S.

SWAT Direct Runoff and Baseflow Evaluation using Web-based Flow Clustering EI Estimation System (웹기반의 유량 군집화 EI 평가시스템을 이용한 SWAT 직접유출과 기저유출 평가)

  • Jang, Won Seok;Moon, Jong Pil;Kim, Nam Won;Yoo, Dong Sun;Kum, Dong Hyuk;Kim, Ik Jae;Mun, Yuri;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In order to assess hydrologic and nonpoint source pollutant behaviors in a watershed with Soil and Water Assessment Tool (SWAT) model, the accuracy evaluation of SWAT model should be conducted prior to the application of it to a watershed. When calibrating and validating hydrological components of SWAT model, the Nash-Sutcliffe efficiency coefficient (EI) has been widely used. However, the EI value has been known as it is affected sensitively by big numbers among the range of numbers. In this study, a Web-based flow clustering EI estimation system using K-means clustering algorithm was developed and used for SWAT hydrology evaluation. Even though the EI of total streamflow was high, the EI values of hydrologic components (i.e., direct runoff and baseflow) were not high. Also when the EI values of flow group I and II (i.e., low and high value group) clustered from direct runoff and baseflow were computed, respectively, the EI values of them were much lower with negative EI values for some flow group comparison. The SWAT auto-calibration tool estimated values also showed negative EI values for most flow group I and II of direct runoff and baseflow although EI value of total streamflow was high. The result obtained in this study indicates that the SWAT hydrology component should be calibrated until all four positive EI values for each flow group of direct runoff and baseflow are obtained for better accuracy both in direct runoff and baseflow.

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Generating Land Cover Map and Estimating Runoff Curve Numbers Using High Resolution Aerial Orthophotos, Impervious Surface Layers and Feature Analyst (고해상도 수치정사 항공사진, 불투수층 레이어 그리고 Feature Analyst를 이용한 토지피복도 작성과 유출계수 산정)

  • Chung Jin-Won;Cheshire Heather M.;Lee Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.228-231
    • /
    • 2006
  • 유출계수(Runoff Curve Number, CN)란 강수량으로부터 대상유역의 유출량과 우수 잠재능(stormwater potential) 평가에 이용하는 수문학 변수로, 미국 자연자원 보존국(Natural Resources Conservation Service; NRCS)이 제안한 방법이다. 유출계수를 평가하기 위해서는 토지피복, 토양형, 토양 습윤 조건에 대한 정보를 조합하여 분석해야 한다. 본 연구의 목적은 미국 North Carolina의 Raleigh와 Cary시를 관통하는 Walnut Creek 유역 서부지역의 토지 피복도를 제작하여, 이 유역의 유출계수를 산정하는 것이다. 이를 위해서, 첫째 위의 불투수면 레이어와 정사항공사진을 기초자료로, ArcGIS와 Feature Analyst를 이용하여 서부 Walnut Creek 유역의 토지피복도를 제작하였다. 둘째, 제작된 토지 피복도와 본 유역의 수문학적 토양 분류체계도(Hydrologic Soil Group Map)를 중첩하여 이 유역의 유출계수도를 제작하였다.

  • PDF