• Title/Summary/Keyword: Hydrographical survey

Search Result 6, Processing Time 0.108 seconds

Uncertainty Analysis of BAG by GNSS Correction (해저지형 표면자료의 GNSS 보정방법에 따른 불확실도 연구)

  • OH, Che-Young;KIM, HO-Yong;LEE, Yun-Sik;CHOI, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • In the recent marine sector, the development and standardization regarding S-100, which is the universal hydrographical data model standard for development of marine space information, was progressed, and for the effectiveness of marine chart production work and the multi-purpose use of water level data in S-100, S-102(Bathymetric Surface grid) standard development and various studies of BAG formats combined with water level and uncertainty, property information is being progressed. Since the water level information that is important in the operation of the ship is provided based on S-102, the calibration method of the location information when producing S-102 is an important factor in deciding the water level. In this study, the hydrographical surveying was conducted by piloting the standardized method for the production of S-102 in Korea, and have compared the accuracy of water level information according to the GNSS post treatment calibration method. As a result of comparing the water level in 2 places in the rocky terrain of the study area, the northern water level of Namu-do was shown as DL 0.79~0.83m, the eastern water level of Daeho-do was DL 12.63~12.91m, and the horizontal position errors of the intermittent sunshine water level were confirmed to be within 1m. As a result, the intermittent sunshine water level according to the location calibration method when producing the BAG was confirmed that it was in the available range for a ship's safe voyage. However, the accuracy verification for the location of the ship when conducting hydrographical surveying was judged that there is a need for a various additional study about regional characteristics and environment factor.

A DISCUSSION ON THE MAIN REASONS CAUSING THE MASS MORTALITY OF CORALS AND BENTHOS IN CONDAO ISLAND DURING OCTOBER 2005.

  • Son, Tong Phuoc Hoang;Khin, Lau Va;Ben, Hoang Xuan;Knee, Tan Chun;Ishizaka, Joji;Ransibrahmanakul, Varis;Tripathy, Sarat Chandra
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.463-466
    • /
    • 2006
  • During Mid October of 2005 a mass mortality of the corals occurred surrounding Con Dao Islands (South Vietnam) where is the recognized as one of the most famous marine parks of Vietnam. Results from the field survey in October 2005 showed that the mass mortality of corals and benthos focused only on the North-West of the islands whereas there was almost no death recorded in the South - East parts. Based on field data it was assumed that an overlap between high water temperature ($>30^{\circ}C$) and low salinity (<25%o) during short term was the impact causing the situation. In this paper, we try to explain this phenomenon based on the hydrographical view together with analyzing ocean colour images. A coral bleaching warning system also is proposed for Condao site.

  • PDF

Analysis of the characteristics of damaging factors in curved channel - Focus on the Namdae stream in GangNeung City - (하천만곡부의 피해인자 특성 조사 분석 - 강릉시 남대천을 중심으로 -)

  • Shim, Kee-Oh;Lee, Joon-Ho;Huh, Kyung-Han;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.13-19
    • /
    • 2004
  • The tremendous flood damage caused by Typhoon Rusa(2002) was occurred at GangNeung City in GangWon Province. Almost of the city region was inundated and most of the stream channel facilities were damaged by flash flood with heavy rainfalls. We have investigated seriously damaged parts of stream bank and tried to analyze the causes of damages focused on flow characteristics in curved channel. We analyzed the damage aspects of curved channel by examining geomorphological survey and hydrographical characteristics. Strong correlation was shown according to the regression analysis between length of stream and meander wave length, and meander belt and length of stream. Furthermore, enveloped curve was presented between bottom slope of channel and meander belt, and meander ratio and channel width. As a result, special consideration about stream flow characteristics are needed for engineers who design stream banks and channels.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

Research on the Variation of Deposition & Accumulation on the Shorelines using Ortho Areial Photos (수치항공사진을 이용한 해안선 침퇴적변화에 관한 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Oh, Che-Young;Son, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • The border of the shorelines in a nation is an important factor in determining the border of a national territory, but Korea's shorelines are rapidly changing due to the recent rise in sea level from global warming and growth-centered economic policy over the decades of years. This research was done centering on the areas having well-preserved shorelines as they naturally are and other areas having damaged shorelines in their vicinities due to artificial structures at the two beaches located at the neighboring areas and having mutually homogeneous ocean conditions with each other. First, this research derived the shorelines using the aerial photographies taken from 1947 until 2007 and revised the tidal levels sounding data obtained from a hydrographical survey automation system consisting of Echosounder[Echotrac 3100] and Differential Global Positioning System[Beacon]by using topographical data and ships on land obtained by applying post-processing Kinematic GPS measuring method. In addition, this research evaluated the changes and dimensional variations for the last 60 years by dividing these determined shorelines into 5 sections. As a result, the Haewundae Beach showed a total of 29% decrease rate in dimension as of the year 2007 in comparison with the year 1947 due to a rapid dimensional decline centering on its west areas, while the dimension of the Gwanganri Beach showed an increase in its dimension amounting to a total of 69% due to the decrease in flow velocity by artificial structures built on both ends of the beach-forming accumulation; thus, it was found that there existed a big difference in deposition & accumulation tendency depending on neighboring environment in spite of the homogeneous ocean conditions.

  • PDF

Interactive Navigational Structures

  • Czaplewski, Krzysztof;Wisniewski, Zbigniew
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.495-500
    • /
    • 2006
  • Satellite systems for objects positioning appeared indispensable for performing basic tasks of maritime navigation. Navigation, understood as safe and effective conducting a vehicle from one point to another, within a specific physical-geographical environment. [Kopacz, $Urba{\acute{n}}ski$, 1998]. However, the systems have not solved the problem of accessibility to reliable and highly accurate information about a position of an object, especially if surveyed toward on-shore navigational signs or in sea depth. And it's of considerable significance for many navigational tasks, carried out within the frameworks of special works performance and submarine navigation. In addition, positioning precisely the objects other than vessels, while executing hydrographical works, is not always possible with a use of any satellite system. Difficulties with GPS application show up also while positioning such off-lying dangers as wrecks, underwater and aquatic rocks also other naturaland artificial obstacles. It is caused by impossibility of surveyors approaching directly any such object while its positioning. Moreover, determination of vessels positions mutually (mutual geometrical relations) by teams carrying out one common tasks at sea, demands applying the navigational techniques other than the satellite ones. Vessels'staying precisely on specified positions is of special importance in, among the others, the cases as follows: - surveying vessels while carrying out bathymetric works, wire dragging; - special tasks watercraft in course of carrying out scientific research, sea bottom exploration etc. The problems are essential for maritime economy and the Country defence readiness. Resolving them requires applying not only the satellite navigation methods, but also the terrestrial ones. The condition for implementation of the geo-navigation methods is at present the methods development both: in aspects of their techniques and technologies as well as survey data evaluation. Now, the classical geo-navigation comprises procedures, which meet out-of-date accuracy standards. To enable meeting the present-day requirements, the methods should refer to well-recognised and still developed methods of contemporary geodesy. Moreover, in a time of computerization and automation of calculating, it is feasible to create also such software, which could be applied in the integrated navigational systems, allowing carrying out navigation, provided with combinatory systems as well as with the new positioning methods. Whereas, as regards data evaluation, there should be applied the most advanced achievements in that subject; first of all the newest, although theoretically well-recognised estimation methods, including estimation [Hampel et al. 1986; $Wi{\acute{s}}niewski$ 2005; Yang 1997; Yang et al. 1999]. Such approach to the problem consisting in positioning a vehicle in motion and solid objects under observation enables an opportunity of creating dynamic and interactive navigational structures. The main subject of the theoretical suggested in this paper is the Interactive Navigational Structure. In this paper, the Structure will stand for the existing navigational signs systems, any observed solid objects and also vehicles, carrying out navigation (submarines inclusive), which, owing to mutual dependencies, (geometrical and physical) allow to determine coordinates of this new Structure's elements and to correct the already known coordinates of other elements.

  • PDF