• Title/Summary/Keyword: Hydrogen-reduction

Search Result 1,186, Processing Time 0.027 seconds

Analysis of Voltaic Cell Described in the Science Textbooks of Secondary Schools (중·고등학교 과학 교과서에 제시된 볼타전지에 대한 문제점 분석)

  • Sin, Dong-Hyeok;Lee, Sang-Gwon;Choe, Byeong-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.363-377
    • /
    • 2002
  • The purpose of this study was to improve the problems of the voltaic cell described in the science textbooks of secondary schools. For this purpose, the contents of science textbooks which are related to the voltaic cell were analyzed and the problems which were not explained clearly by theorems were tried to be explained by experiments, and lastly sug-gestions were made toward the improvements regarding the voltaic cell in the science textbooks. The findings are that there are problems on the ways of ensuring whether the voltaic cell operates properly as a chemical battery, on the explanation of why the hydrogen bubbles form at the zinc electrode, on the cell potential, on the unification of the electrode terminology used, and on the mention of the current. Solutions to the problems except the cell potential were suggested. According to the experiment, the theoretical potential was calculated by considering the potentials of redox reactions at the two electrodes of the cell and by taking into account the characteristics of the electrodes such as the work function, ionization energy, stan-dard reduction potential, and electronegativity.The cell potential of the voltaic cell is explained by several factors. In the improved version of the textbook's introduction section to the voltaic cell, it is necessary to describe the voltaic cell his-torically.For the conceptual section, it should be explained in terms of the Daniel cell.

Solar Photochemical Degradation and Toxicity Reduction of Trichloroethlylene (TCE) (Trichloroethlylene (TCE)의 광화학적 분해 및 독성 저감)

  • Park, Jae-Hong;Kwon, Soo Youl
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.244-249
    • /
    • 2006
  • The photocatalytic degradation of trichloroethlylene (TCE), has been investigated over $TiO_2$ photocatalysts irradiated with solar light. The effect of operational parameters, i.e., initial TCE concentration, $TiO_2$ concentration, pH and additives ($H_2O_2$, persulphate($S_2O{_8}^-$)) on the degradation rate of aqueous solution of TCE has been examined. The results presented in this work demonstrated that degradation of the TCE with $TiO_2/solar$ light was enhanced by augumentation in $TiO_2$ loading, pH, and adding additives but was inhibited by increase in initial TCE concentration. Also individual use of $H_2O_2$ was far more effective than using persulphate in TCE removal efficiency. Furthermore, the relative toxicity with a $solar/TiO_2/H_2O_2$ system was about 15% lower than with a $solar/TiO_2/persulphate$ system and about 35% lower than with a $solar/TiO_2$ system within a reaction time of 150 min, respectively.

  • PDF

Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell (와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향)

  • Park, Sang-Won;Kim, Cheol-Hong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Ahn, Chang-Beohm;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

Microbial Inhibition of Lactic Strains isolated from Kimchi (김치에서 분리한 젖산균의 미생물 생육 저해)

  • Park, Yun-Hee;Kwon, Jung-Joo;Jo, Do-Hyun;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 1983
  • The inhibitory activity of 20 Lactic strains from Kimchi was tested against Escherichia coli and other microorganisms. Of the lactic strains investigated, A7 (Pediococcus cerevisiae) and C4(Leuconostoc spp.) were the most effective in restricting the growth of test organisms. The mixed culture inoculation of each selected lactic strain and Escherichia coli resulted in a drastic reduction in the plate count of Escherichia coli after 24 hours. Similar results were obtained when Staphylococcus aureus and Bacillus cereus were used as test organisms. For all test organisms, the presence of A7 caused a higher death rate constant than that of C4. Addition of catalase in the mixed culture did not prevent inhibition, suggesting that hydrogen peroxide did not cause the inhibition. The filtrate of A7 culture added to Escherichia coli showed identical inhibitory action, however heat treatment of filtrate at $80^{\circ}C$ 30min. destroyed the inhibitory activity. A7 filtrate treated with trypsin substantially lost the inhibitory effect, but not by pepsin. The results imply that the protein-like compound(s) is the principal inhibitor produced by this lactic strain.

  • PDF

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo;Kim, Sung Hyeok;Lee, Sung Ryul;Jang, Sohee;Namkoong, Seung;Hong, Sungsil;Lim, Hyosun;Kim, Youn Kyu;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.604-614
    • /
    • 2020
  • Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

The Synthesis and Evaluation of Antihypertensive 4-(${\beta}$-Guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol (혈압강하제인 4-${\beta}$-Guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol의 합성 및 평가)

  • Jack C. Kim;Lee Euk-suk;Charles C. Chang;Norman J. Doorenbos
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.174-178
    • /
    • 1975
  • The intermediate, 17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(Ⅸ) required for the synthesis of 4-(${\beta}$-guanidinoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(V) was obtained through a reaction of 17${\alpha}$-methyl-3,5-seco-4-norandrostan-17${\beta}$-ol-5-on-3-oic acid(VI) with ammonium hydroxide followed by two reductions(platinum dioxide with hydrogen and lithium aluminium hydride). Condensation of Ⅸ with chloroacetonitrile under anhydrous condition, followed by reduction of the nitrile with lithium aluminium hydride gave 4-(${\beta}$-aminoethyl)-17${\alpha}$-methyl-4-aza-5${\alpha}$-androstan-17${\beta}$-ol(XI). The reaction of XI with 2-methyl-2-thiopseudourea or 3,5-dimethylpyrazole-1-carboxamidine, or cyanamide provided the title compound, V. Relaxation of the nictitating membrane, in the absence of mydriasis, is considered to be evidence of adrenergic neurone blockade. Thus the test compound(V) resembles that of the classical adrenergic neurone blocking agents.

  • PDF

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane (기체 분리막의 투과 특성 예측 모델식 개발)

  • Kim, Jong Hwan;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.619-626
    • /
    • 2007
  • It is of special interest in our membrane separation technology due to its low energy consumption and cost, relatively simple equipment, low investment and operation cost, et al. Full scale utilization of such processes can be widely utilized to the various fields. Using the difference of permeability of gas molecules between the filter layers, it is able to separate effectually pure gases from the mixed gases. In this paper, the membranes of PDMS, ${\gamma}-radiated$ PDMS, PTFE, PTFE-X are chosen to develop the predictive model for the separation of pure gases such as oxygen, nitrogen, hydrogen, and other gases from mixed gases. By utilizing the thermodynamic gas properties($\sigma$, $\varepsilon/k$) and experimental data of gas transport characteristics for different polymer membranes, it is able to develop the predictive model equation under the influence of temperature, pressure and polymer characteristics. Predictive model developed in this research showed good agreement with experimental data of gas permeability characteristics for develop four different polymer membranes. The proposed model can also be extended to the general equation for predicting the separation of gases based on the properties of polymeric membranes.

Effect of Curcumin Derivatives on Heme Oxygenase-1 Expression in HT22 Cells (HT22 세포에서 Curcumin 유도체가 Heme Oxygenase-1 발현에 미치는 효과)

  • Cheong, Yong-Kwan;Lee, Yun-Jung;Chun, Hyun-Ja;Ryu, Il-Hwan;Jee, Yeon-Ju;Chae, Gwon-U;Kim, Young-Sook;Shon, Ji-Ue;Kang, Hyun-Gyu;Lee, Sung-Hee;An, Ren-Bo;Chung, Hun-Taeg;Pae, Hyun-Ock
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • Curcumin, of which a critical characteristic is the capacity of crossing the blood-brain barrier, has been reported to induce the expression of neuroprotective heme oxygenase (HO)-1. The aim of this study is to compare HO-1-inducing capacity and neuroprotective activity of curcumin, its demethoxy (demethoxycurcumin, DMC; bis-demethoxycurcumin, BDMC) and hydrogenated derivatives (tetrahydrocurcumin, THC) in mouse hippocampal HT22 cells. Curcumin attenuated glutamate-induced cell death through HO-1 expression. DMC lacking a methoxy group on one of the aromatic rings possessed slightly lower activity in HO-1 expression and neuroprotection than curcumin. Similarly, BDMC, which lacks two methoxy groups on both of the aromatic rings, showed less activity than curcumin. These findings suggest that the presence of methoxy groups on the aromatic ring is required to enhance neuroprotective HO-1 expression. The reduction of the diarylheptadienone chain of curcumin by hydrogen, as in THC, was accompanied by a complete loss of ability to induce HO-1 expression and neuroprotection, suggesting that the conjugated double bonds of the central seven-carbon chain of curcumin may be essential for its ability to induce neuroprotective HO-1 expression. Our findings may provide useful information for further development of neuroprotective HO-1 inducers.

Time-Dependent Modeling of Performance Degradation for PEMFC Single Cell System to Evaluate the Cell Performance and Durability: Effects of CO Poisoning (고분자전해질 연료전지의 성능과 안정성 시험을 위한 단위전지의 시간 경과에 따른 모델링: 일산화탄소 피독현상에 의한 효과)

  • Kim, Jong-Sik;Kim, Pil;Joo, Ji-Bong;Kim, Woo-Young;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • There have been great attentions on polymer electrolyte membrane fuel cell (PEMFC) due to their advantageous characteristics such as zero emission of hazardous pollutant and high energy density. In this work, we evaluated degradation phenomena and stability of single cell performance via one dimensional single cell modeling. Here, CO poisoning on anode on anode was considered for cell performance degradation. Modeling results showed that the performance and stability were highly degraded with CO concentration in fuel gas. In addition, cell performance was reduced by slow oxygen reduction on cathode in long term operation. In order to overcome, it is required to increase ratio o#hydrogen in the fuel gas of anode and high Pt loading contained in the cathodic catalyst layer.

  • PDF