• Title/Summary/Keyword: Hydrogen uptake

Search Result 111, Processing Time 0.023 seconds

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Hydrogen Spillover Kinetics - I. Effect of Surface Morphology on [$Pt/MoO_{3}$] Catalyst (수소 spillover 속도론 - I. $Pt/MoO_{3}$ 촉매의 표면 형상 변화)

  • Kim Jin Gul;Kim Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.491-494
    • /
    • 2004
  • [ $H_2$ ] uptake into $Pt/MoO_{3}$ was enhanced with an increased calcination temperature. Selective CO pulse chemisorption demonstrated that free Pt surface area was decreased as calcination temperature was increased. Characteristic techniques were dedicated to elucidate the closer contact at adlineation sites between Pt and $MoO_3$ substrates. Calcination resulted in supplying the hydrogen access into more $MoO_3$ particles and controlling the kinetics of hydrogen uptake.

  • PDF

Effect of Temperature on $H_2$ Spillover over $Pt/H_xMoO_3$ (Pt를 담지한 $H_xMoO_3$촉매의 수소 이동 속도에 미치는 온도의 영향)

  • 김진걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.114-117
    • /
    • 2004
  • Rates of $H_2$ uptake into $Pt/MoO_3$ were measured for the noncalcined and $200^{\circ}C$ calcined $Pt/MoO_3$. Amount of $H_2$ uptake for $200^\circ{C}$calcined $Pt/MoO_3$ was greater than the amount of noncalcined $Pt/MoO_3$. From these two experiments, it was found that the rates of $H_2$ desorption were proportional to the increase of desorption temperature. XPS demonstrated that Cl reduced more faster in ITR after calcination at $200^{\circ}C$. This inducd smaller amount of residual chlorine at adlineation sites between Pt and $MoO_3$ substrates. This resulted in opening the more channel of hydrogen pathway into more $MoO_3$particles and controled the kinetics of hydrogen uptake.

  • PDF

NH3 Decomposition Reaction for Hydrogen Formation Using Vanadium Carbide Catalysts (바나듐 탄화물 촉매를 이용한 수소생성용 암모니아 분해반응)

  • KIM, JUNG-SU;CHOI, SEONG-SHIN;CHOI, JEONG-GIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The synthesis and catalytic activities over vanadium carbides were examined for ammonia decomposition reaction to produce the hydrogen. In particular, the comparison of vanadium nitrides were made on the ammonia decomposition reaction. The experimental data exhibited that BET surface areas ranged from 5.2 ㎡/g to 25.6 ㎡/g and oxygen uptake values varied from 3.8 μmol/g to 31.3 μmol/g. It is general that vanadium carbides (VC) were observed to be superior to vanadium nitrides for ammonia decomposition reaction. The primary reason for these differences were thought to be related to the extent of electronegativity between these materials. Most of vanadium carbide crystallites were exceeded by Pt/C crystallite. We assumed that the activities for vanadium carbide crystallites (VC) were comparable to or even higher than that determined for the Pt/C crystallite.

Pt/MOF-5 Hybrid Composite Encapsulated with Microporous Carbon Black to Improve Hydrogen Storage Capacity and Hydrostability

  • Yeo, Sin-Yeong;Gwak, Seung-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.2-45.2
    • /
    • 2011
  • Metal organic frameworks (MOF) have generated considerable interests as a potential candidate for hydrogen storage owing to their extremely high surface-to-volume ratio and low density. In this study, Pt nanoparticles of about 3 nm in size were introduced outside MOF-5 [$Zn_4O$(1,4-benzenedicarbocylate)3], which was then encapsulated with hydrophobic microporous carbon black (denoted CB@Pt/MOF-5) in order to enhance hydrogen uptake capacity without decreasing the specific surface area and hydrostability. To study the chemical composition, morphology, crystal information, and properties of the synthesized material, a variety of techniques is employed, including WXRD, XPS, ICP-AES, FE-SEM, HR-TEM, and N2 adsorption-desorption, confirming the formation of novel hybrid composite designated CB@Pt/MOF-5 with highly crystalline structure, large specific surface area and pore volume. In addition, $H_2$ storage capacity for resulting material was measured using magnetic suspension microbalance at 77 and 298 K under high-pressure condition, and the hydrostability was also tested by exposing the sample to 33% relative humidity at $23^{\circ}C$ and measuring XRD as a function of time.

  • PDF

Hydrogen Production from Ammonia Decomposition over Transition Metal Carbides (전이금속 카바이드를 이용한 암모니아 분해 반응으로부터 수소생산)

  • CHOI, EUI-JI;CHOI, JEONG-GIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The preparation and catalytic activities of various transition metal carbide crystallites (VC, MoC, WC) were examined in this study. In particular, the effect of different kinds of transition metal crystallites were scrutinized on the ammonia decomposition reaction. The experimental results showed that BET surface areas ranged from $8.3m^2/g$ to $36.3m^2/g$ and oxygen uptake values varied from $9.1{\mu}mol/g$ to $25.4{\mu}mol/g$. Amongst prepared transition metal carbide crystallites, tungsten compounds (WC) were observed to be most active for ammonia decomposition reaction. The main reason for these results were considered to be related to the extent of electronegativity between these materials. Most of transition metal carbide crystallites were exceeded by Pt/C crystallite. However, the steady state reactivities for some of transition metal carbide crystallites (WC) were comparable to or even higher than that determined for the Pt/C crystallite.

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

Dyeing of Cotton with Rosemary Extract (로즈마리 추출물틀 이용한 면의 염색)

  • 신윤숙;오유정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.3_4
    • /
    • pp.485-491
    • /
    • 2002
  • Dyeing properties of rosemary colorants on cotton fabrics were investigated. Effect of dyeing conditions on dye uptake and effect of mordanting and cationizing on dye uptake, color change and colorfastness were explored. Also, antimicrobial activity of rosemary colorants was ascertained and further effect of cationizing on antimicrobial activity was investigated. Affinity of rosemary colorants to cotton fiber was considerably low, and its isotherm adsorption curve was Freundlich type, indicating that hydrogen bonding was involved in the adsorption of rosemary colorants to cotton fiber. The cotton fabrics showed generally high colorfastness except fastness to washing and light. The cationized cotton with Cationon UK(quarterly ammonium salt) showed higher dye uptake and shorter dyeing time, compared with the untreated cotton. The cationized cotton showed good colorfastness to washing, perspiration and rubbing. Antimicrobial activity of rosemary colorfastness was confirmed. The cationized cotton itself showed high bacterial reduction rate. For cationized and dyed samples, as dye uptake increased, bacterial reduction rate was decreased slightly.