1 |
J. G. Choi, "Influence of surface composition on HDN activities of molybdenum nitrides", J. Ind. Eng. Chem., Vol. 8, No 1, 2002, pp. 1-11. Retrieved from https://www.cheric.org/research/tech/periodicals/view.php?seq=362649.
|
2 |
D. J. Sajkowski and S. T. Oyama, "Symposium on the chemistry of W/Mo catalysis", Prep. Petrol. Chem. Div., 199th ACS Nat. Meeting, Vol. 35, No 2, 1990, pp. 233.
|
3 |
N. I. Il'chenko, "Oxidative catalysis on transition-metal carbides", Kinetics and Catalysis, Vol 18, No. 1, 1977, pp. 153-163, doi: https://doi.org/10.6111/JKCGCT.2010.20.2.074.
|
4 |
L. leclercq, K. Imura, S. Yoshida, T. Barbee, and M. Boudart, "Preparation of catalysts II", Elsevier, USA, 1978, pp. 627.
|
5 |
L. Volpe and M. Boudart, "Ammonia synthesis on molybdenum nitrides", J. Phys. Chem., Vol. 90, 2015, pp. 4874, doi: https://doi.org/10.1021/j100411a031.
DOI
|
6 |
R. B. Levy and M. Boudart, "Platinum-like behavior of tungsten carbide in surface catalysis", Science, Vol. 181, No. 4099, 2013, pp. 547-549, doi: https://doi.org/10.1126/science.181.4099.547.
DOI
|
7 |
L. H. Bennett, J. R. Cuthill, A. J. McAlister, N. E. Erickson, and R. E. Watson, "Electronic structure and catalytic behavior of tungsten carbide", Science, Vol. 184, No. 4136, 2014, pp. 563-565, doi: https://doi.org/10.1126/science.184.4136.563.
DOI
|
8 |
J. G . C hoi, J. H a, and J. W. Hong, "Synthesis and catalytic properties of vanadium interstitial compounds", Applied Catalysis, Vol. 168, No. 1, 1998, pp. 47-56, doi: https://doi.org/10.1016/S0926-860X(97)00332-3.
DOI
|
9 |
J. H. Sinfelt and D. J. C. Yates, "Effect of carbiding on the hydrogenolysis activity of molybdenum", Nature Phys. Sci., Vol. 229, 1971, pp. 27-28, doi: https://doi.org/10.1038/physci229027b0.
|
10 |
P. A. Armstrong, A. T. Bell, and J. A. Reimer, "Comparison of the dynamics and orientation of chemisorbed benzene and pyridine on molybdenum nitride (.gamma.-Mo2N)", J. Phys. Chem., Vol. 97, No. 9, 2013, pp. 1952-1960, doi:https://doi.org/10.1021/j100111a037.
DOI
|
11 |
L. E. Toth, "Transition metal carbides and nitrides", Academic Press, USA, 1971, pp. 234.
|
12 |
J. Yu, X. Gao, G. Chen, and X. Yuan, "Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction", Int. J. Hydrogen Energy, Vol. 41, No. 7. 2016, pp. 4150-4158, doi: https://doi.org/10.1016/j.ijhydene.2016.01.008.
DOI
|
13 |
J. B. Claridge, A. P. E. York, A. J. Brungs, and M. L. H. Green, "Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors", Chem. Mater., Vol. 12, No. 1, 2000, pp. 132-142, doi: https://doi.org/10.1021/cm9911060.
DOI
|
14 |
J. G. Choi, "Ammonia decomposition over titanium carbides", J. Korean Crystal Growth and Crystal Technology, Vol. 22, No. 6, 2012, pp. 269-273, doi:https://doi.org/10.6111/JKCGCT.2012.22.6.269.
DOI
|
15 |
J. G. Choi, "Preparation and characterization over niobium carbide crystallites", J. Korean Crystal Growth and Crystal Technology, Vol. 19, No. 3, 2009, pp. 125-129. Retrieved from http://www.koreascience.or.kr/article/JAKO200922951806937.page.
|
16 |
L. Peng, J. Shen, L. Zhang, Y. Wang, R. Xiang, J. Li, L. Li, and Z. Wei, "Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions", J. Mater. Chem. A Mater., Vol. 44, 2017, pp. 23028-23034, doi: https://doi.org/10.1039/C7TA07275A.
|
17 |
W. Fu, Y. Wang, H. Zhang, M. He, L. Fang, X. Yang, Z. Huang, J. Li, X. Gu, and Y. Wang, "Epitaxial growth of graphene on V8C7 nanomeshs for highly efficient and stable hydrogen evolution reaction", J. Catal., Vol. 369, 2019, pp. 47-53, doi: https://doi.org/10.1016/j.jcat.2018.10.033.
DOI
|