• Title/Summary/Keyword: Hydrogen technology

Search Result 3,529, Processing Time 0.041 seconds

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.

Trend of Photo-Electrochemical Hydrogen Production Technology (광전기화학적 수소제조 기술 동향분석)

  • Han, Hye-Jung;Kang, Kyung-Seok;Baeg, Jin-Ook;Moon, Sang-Jin;Kim, Jong-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.741-748
    • /
    • 2011
  • Hydrogen is clean and renewable, and recognized as a very promising energy resource to solve both depletion of petroleum and environmental problems caused by the use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, the technology trend of photo-electrochemical (PEC) hydrogen production was scrutinized based on the patent and paper analysis. Open/registered patents of US, JP, EP, and KR and SCI Journals related to the PEC hydrogen production technology between 1996~2010 were reviewed. Patents and papers were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend was discussed by classifying each patent and paper based on the publishing year, country, and organization, and analyzing the core patents and papers.

Investment Benefit Analysis of Safety Assessment and Inspection Technologies of Hydrogen Bus Fuel System Using Contingent Valuation Methods (조건부가치측정법을 이용한 수소버스 연료장치 안전성 평가 및 검사기술에 대한 투자 편익 분석)

  • Seohyun, Lim;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2022
  • Recently, the government has been expanding the supply of hydrogen vehicles according to the roadmap for vitalizing the hydrogen economy, but is developing safety assessment and inspection technology for the relevant vehicles. This study analyzed the prevention of hydrogen bus accidents' economic effect that arises from the application and development of large-capacity CHSS oil pressure repetition-test assessment technology, hydrogen bus internal chamber pressure transmission and emission volume inspection technology, among various technologies capable of assessing the safety of a hydrogen bus fuel system. To this end, the contingent valuation method (CVM), one of the value evaluation methods of non-market goods, was applied to investigate users' willingness to pay for each inspection technology. The survey for users' willingness to pay was conducted by attaching posters to promote surveys on the internet and within buses to the entire public. As a result of the analysis, the average WTP of the hydrogen bus internal chamber pressure transmission volume inspection technology was 25.3 KRW, the average WTP of the hydrogen bus internal chamber pressure emission volume inspection technology was 18.6 KRW, and the average WTP of the large-capacity CHSS oil pressure repetition-test assessment technology was measured at 16.7 KRW. In addition, the costs and benefits of the introduction of the relevant inspection technology were defined through the interviewing of experts at related research institutions and businesses. As a result of conducting an economic analysis (4.5% discount rate) according to the development of each inspection technology, economic feasibility was seen in all assessment and inspection technologies. As much as the technology is indispensable for the safe use of hydrogen buses, it shows that investment in related technology is very necessary in the future. However, because it was decided that the relevant analysis will differ according to the distribution rate of hydrogen buses, further analysis following this future distribution rate of hydrogen buses is needed, and future users should be made clearly aware of the safety and environmental nature of the technology.

Strategy of Energy Technology Development for Establishing the Hydrogen Economy (수소경제사회구현을 위한 에너지기술개발전략)

  • Lee, Seong-Kon;Mogi, Gento;Kim, Jong-Wook;Shin, Sung-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.207-215
    • /
    • 2007
  • The rapid changes of energy environment such as high oil price, united nations framework convention on climate change, and the hydrogen economy have been happening to provide national energy security in the 21st century, we need to build strategic approach for coping with energy environment. From a long-term viewpoint of energy technology development, it's time to develop energy technology with selection and specification. In this study, we build energy technology roadmap for establishing the hydrogen economy with a long-term strategy. We analyze economic spin-offs and commercial potential for establishing energy technology roadmap of energy technology development for establishing the hydrogen economy.

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

Hydrogen Embrittlement and Surface Properties of Pd-coated Zr-based Amorphous Alloys (Pd 코팅된 Zr기 비정질 합금의 수소취성 및 표면특성)

  • Seok, Song;Lee, Dock-Young;Kim, Ki-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2007
  • [ $Zr_{50}-Ni_{27}-Nb_{18}-Co_5$ ] amorphous alloys ribbon was prepared by a single-roller melt-spinning technique. In order to improve the hydrogen kinetics Pd-coating were carried out on each side of the amorphous ribbon. Pd prevents oxidation of Zr and catalyses the dissociation of molecular hydrogen to atomic hydrogen. In this work, the hydrogen embrittlement and surface properties on Zr-based amorphous alloys were investigated. The Zr-based amorphous alloys were characterized by X-ray diffractometry(XRD) and differential scanning calorimetry(DSC). The morphology of surface and roughness was observed by using scanning electron microscopy(SEM) and atomic force microscopy (AFM). A lattice parameter of both Pd and Zr-based amorphous alloy was increased after hydrogen permeation at 473 K. After hydrogen permeation at 473 K, some cracks were observed on the surface of Pd, which was the cause for the hydrogen embrittlement. The crystallization temperature of Zr-based amorphous alloy was decreased due to the permeated hydrogen.

Hydrogen Delayed Fracture of TRIP Steel by Small Punch Test (소형펀치시험에 의한 TRIP강의 수소 지연파괴 거동)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • The strain-induced phase transformation from austenite to martensite is responsible for the high strength and ductility of TRIP steels. However high strength steels are susceptible to hydrogen embrittlement. This study aimed to evaluate the effects of hydrogen on the behavior of hydrogen delayed fracture in TRIP steel with hydrogen charging conditions. The electrochemical hydrogen charging was conducted at each specimen with varying current density and charging time. The relationship between hydrogen concentration and mechanical properties of TRIP steel was established by SP test and SEM fractography. The maximum loads and displacements of the TRIP steel in SP test decreased with increasing hydrogen charging time. The results of SEM fractography investigation revealed typical brittle mode of failure. Thus it was concluded that hydrogen delayed fracture in TRIP steel result from the diffusion of hydrogen through the ${\alpha}$' phase.

An Analysis of Small Punch Test Conducted with the High Strength Dual Phase Sheet Steels Charged with Hydrogen (수소주입된 고강도 DP 박강판의 소형펀치시험결과 분석)

  • Choi, Young-Cheul;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.5
    • /
    • pp.229-233
    • /
    • 2013
  • The small punch(SP) tests that can be applied to high strength sheet steel in automobile were carried out to evaluate the behavior of hydrogen embrittlement of DP sheet steels. In order to charge hydrogen at DP sheet steels, DP sheet steels were treated by the electrochemical hydrogen charging method under the charging conditions of current densities of 100, 150 and 200 $mA/cm^2$ for charging times of 5, 10, 25 and 50 hrs. Respectively, After hydrogen charging with experimental conditions, SP tests were performed. From the SP results, the correlations between the variation of bulb diameters and bulb heights with the hydrogen charging conditions were analysed. It was shown that the variation of bulb diameters were not significant with the hydrogen embrittlement due to the amounts of hydrogen charging. On the other hand, the bulb heights were observed to decrease with increasing hydrogen contents. It was thought that these results of the variation of bulb shapes after SP tests would be estimated as the index of evaluation of hydrogen embrittlement.

Effect of Pre-strain on Hydrogen Embrittlement in Intercritically Annealed Fe-6.5Mn-0.08C Medium-Mn steels

  • Sang-Gyu Kim;Young-Chul Yoon;Seok-Woo Ko;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1491-1495
    • /
    • 2022
  • The present research deals with the effect of pre-strain on the hydrogen embrittlement behavior of intercritically annealed medium-Mn steels. A slow strain-rate tensile test was conducted after hydrogen charging by an electrochemical permeation method. Based on EBSD and XRD analysis results, the microstructure was composed of martensite and retained austenite of which fraction increased with an increase in the intercritical annealing temperature. The tensile test results showed that the steel with a higher fraction of retained austenite had relatively high hydrogen embrittlement resistance because the retained austenite acts as an irreversible hydrogen trap site. As the amount of pre-strain was increased, the hydrogen embrittlement resistance decreased notably due to an increase in the dislocation density and strain-induced martensite transformation.

Hydrogen Embrittlement of TRIP Steel Charged with Hydrogen Under Two Type Electrolytes (2종 전해질 분위기하 수소주입된 TRIP 강의 수소취성)

  • Choi, Jong-Un;Lee, Sang-Wook;Lee, Kyung-Min;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • The hydrogen was charged TRIP steel by electrochemical method under 0.5M $H_2SO_4$ electrolyte and 0.5M NaOH electrolyte with hydrogen charging conditions respectively. The degree of hydrogen embrittlement of TRIP steel was evaluated by using micro Vickers hardness tests. These results showed that the degree of hydrogen embrittlement in acidic electrolyte with hydrogen penetration and hydrogen diffusion through the depth of specimen was more sensitive than its alkaine electrolyte between two type electrolytes. However, it was investigated that micro Vickers hardnesses of surface in acidic electrolyte under two electrolyte were higher than those of alkaine electrolyte. It was thought that in case of hydrogen embrittlement in acid-ice electrolyte, hydrogen charging time was more effective than current density, in case of alkaine electrolyte, hydrogen current density was more effective than charaging time.