Browse > Article
http://dx.doi.org/10.7842/kigas.2015.19.1.57

Hydrogen Embrittlement of TRIP Steel Charged with Hydrogen Under Two Type Electrolytes  

Choi, Jong-Un (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology)
Lee, Sang-Wook (Dept. of Materials Science & Engineering, Graduate School of Industry, Seoul National University of Science & Technology)
Lee, Kyung-Min (Manufacturing Technology Convergence Program, Graduate School, Seoul National University of Science & Technology)
Kang, Kae-Myung (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology)
Publication Information
Journal of the Korean Institute of Gas / v.19, no.1, 2015 , pp. 57-63 More about this Journal
Abstract
The hydrogen was charged TRIP steel by electrochemical method under 0.5M $H_2SO_4$ electrolyte and 0.5M NaOH electrolyte with hydrogen charging conditions respectively. The degree of hydrogen embrittlement of TRIP steel was evaluated by using micro Vickers hardness tests. These results showed that the degree of hydrogen embrittlement in acidic electrolyte with hydrogen penetration and hydrogen diffusion through the depth of specimen was more sensitive than its alkaine electrolyte between two type electrolytes. However, it was investigated that micro Vickers hardnesses of surface in acidic electrolyte under two electrolyte were higher than those of alkaine electrolyte. It was thought that in case of hydrogen embrittlement in acid-ice electrolyte, hydrogen charging time was more effective than current density, in case of alkaine electrolyte, hydrogen current density was more effective than charaging time.
Keywords
TRIP steel; hydrogen embrittlement; Vickers hardness; electrolyte;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 O. Matsumura, Y. Sakuma, H.Takechi, Trans. Iron and Steel Inst. Japan, 27,(1987) 570.   DOI
2 K. M. Kang, J. W. Park, Kor. J. Mater. Res., 20, (2010) 581.   DOI   ScienceOn
3 J. U. Choi, J. W. Park, K. M. Kang, Kor. J. Mater. Res., 21, (2011) 212.   DOI
4 J. W. Park, K. M. Kang, KIGAS 14, (2010) 38.
5 R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Acta Mater., 60, (2012) 3022.   DOI
6 C. C. Lee, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 128
7 J. U. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 46 (2013) 42.   DOI
8 Y. Sakuma, O. Matsumura, H. Takechi, Met. Trans., 2A, (1991) 489.
9 I. Tsukatani, T. Kamei, S. Hashimoto, K. Hosomi, Microalloyed HSLA Steels, ASM International, Chicago, Illinois, 541 (1998).
10 J. W. Park, K. M. Kang, KIGAS 18 (2010) 61.
11 J. U. Choi, K. G. Han, J. W. Park, K. M. Kang, KIGAS 18 (2010) 40.
12 J. W. Park, K. M. Kang, Kor. J. Mater. Res., 22, (2010) 29.
13 J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 212.   DOI
14 H. S. Kim, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 284.   DOI
15 J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 47, (2014) 257.   DOI
16 L. Marchetti, E. Herms, P. Laghoutraris, J. Chene. Int. J. Hydrogen Energy, 36 (2011) 1588.
17 K. M. Kang, J. W. Park, J. U. Choi, Inst. Surf. Eng., 46, (2013) 48.   DOI   ScienceOn
18 Ashish Thakur, R. Raman, S.N. Malhotra, Mater. Chemi. Phys. 101, (2007) 441.   DOI