DOI QR코드

DOI QR Code

Hydrogen Embrittlement of TRIP Steel Charged with Hydrogen Under Two Type Electrolytes

2종 전해질 분위기하 수소주입된 TRIP 강의 수소취성

  • Choi, Jong-Un (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Sang-Wook (Dept. of Materials Science & Engineering, Graduate School of Industry, Seoul National University of Science & Technology) ;
  • Lee, Kyung-Min (Manufacturing Technology Convergence Program, Graduate School, Seoul National University of Science & Technology) ;
  • Kang, Kae-Myung (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 최종운 (서울과학기술대학교 신소재공학과) ;
  • 이상욱 (서울과학기술대학교 산업대학원 재료공학과) ;
  • 이경민 (서울과학기술대학교 산업대학원 생산기술융합프로그램) ;
  • 강계명 (서울과학기술대학교 신소재공학과)
  • Received : 2015.01.08
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

The hydrogen was charged TRIP steel by electrochemical method under 0.5M $H_2SO_4$ electrolyte and 0.5M NaOH electrolyte with hydrogen charging conditions respectively. The degree of hydrogen embrittlement of TRIP steel was evaluated by using micro Vickers hardness tests. These results showed that the degree of hydrogen embrittlement in acidic electrolyte with hydrogen penetration and hydrogen diffusion through the depth of specimen was more sensitive than its alkaine electrolyte between two type electrolytes. However, it was investigated that micro Vickers hardnesses of surface in acidic electrolyte under two electrolyte were higher than those of alkaine electrolyte. It was thought that in case of hydrogen embrittlement in acid-ice electrolyte, hydrogen charging time was more effective than current density, in case of alkaine electrolyte, hydrogen current density was more effective than charaging time.

0.5M $H_2SO_4$ 전해질과 0.5M NaOH 전해질 분위기하에서 전기화학적방법으로 수소주입시킨 TRIP 강의 수소주입과 수소침투에 따른 취성화 정도를 미소경도값의 변화로 조사하여, 각각의 전해질에 따른 취성화의 정도를 비교, 분석하였다. 실험결과, 2 종의 전해질에서 수소취성화의 정도는 산성전해질이 알칼리성전해질보다 수소침투와 확산에 더욱 민감한 것으로 조사되었다. 그러나 산성전해질이 알칼리성전해질에 비하여 빠른 수소침투의 영향으로 표면하 미소경도값이 높게 조사되었고, 두 전해질 모두에서 표면하 수소침투효과는 큰 것으로 나타났다. Subsurface zone에서의 수소취성화의 정도는 산성전해질의 경우 전류밀도의 영향보다는 주입시간이, 알칼리성 전해질의 경우 주입시간보다는 전류밀도가 수소취성화에 주요 인자로 생각되었다.

Keywords

References

  1. O. Matsumura, Y. Sakuma, H.Takechi, Trans. Iron and Steel Inst. Japan, 27,(1987) 570. https://doi.org/10.2355/isijinternational1966.27.570
  2. K. M. Kang, J. W. Park, Kor. J. Mater. Res., 20, (2010) 581. https://doi.org/10.3740/MRSK.2010.20.11.581
  3. J. U. Choi, J. W. Park, K. M. Kang, Kor. J. Mater. Res., 21, (2011) 212. https://doi.org/10.3740/MRSK.2011.21.4.212
  4. J. W. Park, K. M. Kang, KIGAS 14, (2010) 38.
  5. R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Acta Mater., 60, (2012) 3022. https://doi.org/10.1016/j.actamat.2012.02.007
  6. C. C. Lee, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 128
  7. J. U. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 46 (2013) 42. https://doi.org/10.5695/JKISE.2013.46.1.042
  8. Y. Sakuma, O. Matsumura, H. Takechi, Met. Trans., 2A, (1991) 489.
  9. I. Tsukatani, T. Kamei, S. Hashimoto, K. Hosomi, Microalloyed HSLA Steels, ASM International, Chicago, Illinois, 541 (1998).
  10. J. W. Park, K. M. Kang, KIGAS 18 (2010) 61.
  11. J. U. Choi, K. G. Han, J. W. Park, K. M. Kang, KIGAS 18 (2010) 40.
  12. J. W. Park, K. M. Kang, Kor. J. Mater. Res., 22, (2010) 29.
  13. J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 212. https://doi.org/10.5695/JKISE.2012.45.5.212
  14. H. S. Kim, K. M. Kang, Kor. Inst. Surf. Eng., 45, (2012) 284. https://doi.org/10.5695/JKISE.2012.45.6.284
  15. J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 47, (2014) 257. https://doi.org/10.5695/JKISE.2014.47.5.257
  16. L. Marchetti, E. Herms, P. Laghoutraris, J. Chene. Int. J. Hydrogen Energy, 36 (2011) 1588.
  17. K. M. Kang, J. W. Park, J. U. Choi, Inst. Surf. Eng., 46, (2013) 48. https://doi.org/10.5695/JKISE.2013.46.1.048
  18. Ashish Thakur, R. Raman, S.N. Malhotra, Mater. Chemi. Phys. 101, (2007) 441. https://doi.org/10.1016/j.matchemphys.2006.08.004