• Title/Summary/Keyword: Hydrogen storage and production

Search Result 116, Processing Time 0.02 seconds

Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies (수소 전주기 경제성 분석 프로그램 개발)

  • SUHYUN KIM;YOUNGDON YOO;HYEMIN PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

Photoproduction of Hydrogen in Polyvinylalcohol-Iimmobilized Spinach Chloroplsats with Platinum Catalysts (Polyvinylalcohol에 고정한 시금치 엽록체와 백금 촉매를 이용한 광수소 발생)

  • 박인호
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.313-319
    • /
    • 1993
  • Photoproduction of hydrogen by free and polyvinylalcohol (PVA)-immobilized spinach chloroplasts was investigated. Immobilization of chloroplast with PVA increased the functional stability of the chloroplast during storage. PVA-immobilized chloroplasts preserved photosynthetic electron transport activity much better than free chloroplasts. The hydrogen production of free chloroplast decreased to 17% of initial activity after storage of six days. The hydrogen production of the PVA-immobilized chloroplast, however, showed 44% of initial activity after storage of 15 days. The maximal rate of hydrogen production was accomplished at 2$^{\circ}C$ under the light intensity above 116 $\mu$E.m-2.s-1. The amount of hydrogen produced was proportional to the chlorophyll concentration. The hydrogen production was inhibited by DCMU treatment, indicating hydrogen production is dependent on photosynthetic electron transport. These results suggest that PVA is a good candidate for the immobilization matrix of chloroplasts for the photoproduction of hydrogen.

  • PDF

From Renewable Electricity to Green Hydrogen: Production and Storage Challenges for a Clean Energy Future

  • Hidouri Dalila;Rym Marouani;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.171-179
    • /
    • 2024
  • Decentralized energy production without greenhouse gas emissions from renewable energy sources despite their advantage and environmental impact suffers from the problem of intermittent and fluctuating supply depending on weather conditions. To overcome this problem, energy storage is essential to enable reliable and continuous supply of the load. Hydrogen is one of the most promising energy storage solutions because it is easily transportable and can be used as fuel or as a raw material for the production of other chemicals.In this article, we will focus on hydrogen energy storage techniques using photovoltaic systems. We will review the different types of hydrogen storage structuresfor several applications, including residential and commercial buildings, as well as industry and transportation (electric vehicles using PEFMC fuel cells).

Improvement of Accuracy for Determination of Hydrogen Storage of Sieverts Apparatus (부피법을 이용한 수소 저장 성능 평가 장치의 수소 저장량 측정법 개선)

  • Cho, Won-Chul;Han, Sang-Sub;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • This paper briefly discusses the main sources of errors and their solutions for measuring hydrogen uptake from gas phase by the Sieverts technique. Correction of volumetric errors of apparatus, density of hydrogen storage material, estimation of temperature gradient are investigated. Systematic errors and the change of density of the host material according to the pressure have been the subject of much controversy in recent years. We considered the standard ball calibration, temperature gradient distribution, pretreatment of hydrogen storage materials to minimize errors. We could lessen the miscalculations after applying those methods to Equilibrium pressure-composition isotherm data.

Technology Characteristics of Hydrogen Storage and Its Technology Trend by the Patent Analysis (수소저장 기술특성 및 특허분석에 의한 기술동향)

  • Noh, Soon-Young;Rhee, Young-Woo;Kang, Kyung-Seok;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.90-102
    • /
    • 2008
  • Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization. There are a few different approaches for hydrogen storage technology. In this paper, characteristics of hydrogen storage technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2006. The technology trend of hydrogen storage was assessed by classifying each patent based on the publishing year, country, and the type of storage technology.

Technology Trend of Hydrogen Storage by the Patent Analysis (국내외 수소저장기술 특허 분석을 통한 기술개발 동향)

  • Kim, Jung-Wun;Kim, Tea-Wook;Ryu, Jae-Woong;Jang, Ki-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • The hydrogen storage is one of the key technologies to achieve the successful hydrogen economy and a chain to connect hydrogen production to its utilization. In this paper, characteristics and strong candidates of hydrogen storage technologies were analyzed from the objective information of patents. Also, the hydrogen storage technology trends and gaps were assessed using statistical or qualitative analysis. In this study the patents applied in Korea, Japan, US and EU from 10 or 20 years ago to 2011 were analyzed. The result of patent analysis could be used for developing or searching for promising technology of the hydrogen storage.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration (HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구)

  • Lee, Sang-Ho;Hong, Seong-Dae;Kim, Jeong-Keun;Hwang, Gab-Jin;Moon, Il-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

Economic analysis of hydrogen production technology using water electrolysis (물의 전기분해에 의한 수소 제조기술과 경제성 분석)

  • Sim, Kyu-Sung;Kim, Chang-Hee;Park, Kee-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.324-332
    • /
    • 2004
  • According to the rapid depletion of the fossil fuels, the electricity and hydrogen will gradually take charge of the future energy supply. Especially, in order to control the supply and demand of electricity, energy storage medium is necessary and this could be solved by the combination of water electrolysis and fuel cell. Although electricity can be generated from such alternative energies as hydropower, nuclear, solar, and wind-power resources, alternative energy storage medium is also required since regenerative energies, solar and wind-powers, are intermittent energy resources. In this regard, hydrogen production from water electrolysis was recognized as a superb method for electricity storage. In this work, the current development and economic status of alkaline, solid polymer, and high temperature electrolysis were reviewed, and then the practical use of water electrolysis technology were discussed.

Experimental and Numerical Study on the Hydrogen Refueling Process (고압 수소 충전 시스템에 대한 실험 및 수치해석)

  • Lee, Taeck-Hong;Kim, Myoung-Jin;Park, Jong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2007
  • The research on production and application of hydrogen as an alternative energy in the future is being carried out actively. It hydrogen storage is necessary in order that user use hydrogen economically without much difficulty. Among the ways of hydrogen storage the method which is compressed hydrogen gas by high pressure is easier for application than other methods. In this study, we have been calculated gas with changing pressure and temperature variation of container wall through applied to mass and energy balance equation when compressing hydrogen by high pressure, and also to Beattie-Bridgeman equation of state for the kinetic of hydrogen. We will apply above date as a preliminary for design of hydrogen storage tank.