• 제목/요약/키워드: Hydrogen safe

검색결과 116건 처리시간 0.033초

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.

지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구 (The Injection Characteristics and Environmental Effects for Grouting Materials)

  • 천병식;이재영;하광현
    • 한국지반환경공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.37-49
    • /
    • 2002
  • 본 연구에서는 고강도 고내구성 및 환경에 대한 안정성이 높은 주입재료를 주입재 형태별로 즉 현탁액형, 용액형 주입재에 배합설계를 실시하여 주입압, 지반조건에 따른 주입효과와 환경적 유해성을 분석 검토하고자 한다. 주입재 특성 및 주입효과에 대한 연구결과, 현탁액형 주입재에서는 초미립자시멘트가 보통시멘트에 비하여 상당히 높은 침투성 및 고결율을 나타냄을 알 수 있었고 용액형 주입재에 사용된 인산과 탄산수소나트륨의 경우 초미립자시멘트와 유사한 경향을 나타내었다. 주입된 고결체의 압축강도 시험결과, 현탁액형 주입재의 초미립자시멘트가 상당한 고강도를 나타났으나 용액형 주입재의 경우 현탁액형 주입재에 비하여 매우 낮은 강도를 나타내었다. 또한 주입재가 가지고 있는 환경적 유해성 여부를 평가하기 위해 대상시료를 주입재의 원재료 및 주입재의 고결시편의 양생일수에 따라 중금속 용출시험을 실시한 결과, 선정한 약액조합 및 고결체의 중금속 함량은 규제기준을 만족하였다.

  • PDF

마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구 (Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor)

  • 정기문;최석현;이희준
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.381-387
    • /
    • 2017
  • 수소화붕소나트륨은 안정적으로 수소가 저장된 물질이며, 촉매반응으로 수소를 용이하게 분리할 수 있다. 본 연구에서는 탈수소 반응률을 높이기 위해 비표면적이 큰 마이크로 pin fin 화학반응기를 제작하여 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 실험을 수행하였다. 나노공정을 이용하여 실리콘웨이퍼에 높이 $300{\mu}m$, 직경 $50{\mu}m$의 pin fin을 축간격 1.3, 횡간격 1.5으로 엇갈림 배열하였다. 수소화붕소나트륨 수용액은 5~20 wt.% 농도로 Re수 1~60으로 공급되었으며, 초고속카메라를 이용하여 탈수소반응 유동양상을 관찰하였다. 실험 결과 마이크로 pin fin 화학반응기는 동일 수력학적직경을 가지는 직관 마이크로채널 화학반응기보다 화학반응 성능이 2.45배 우수한 반면, 압력강하는 1.5배 증가하였다.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

EMLA® 연고를 이용한 불산 화학 화상의 통증 조절 (Pain Control for Hydrofluoric Acid Chemical Burn Using EMLA® creams)

  • 최환준;송진우;최창용
    • Archives of Plastic Surgery
    • /
    • 제36권1호
    • /
    • pp.113-117
    • /
    • 2009
  • Purpose: Although Hydrofluoric acid(HF) is not a strong acid when compared to other hydrogen halides, it is a feared corrosive and is particularly dangerous at higher concentrations. HF burns are characterized by symptoms, often delayed and localized with diluted HF solutions, to include erythema, edema and severe pain. Pain, a well known symptom following exposure to calcium binding. And, EMLA$^{(R)}$ cream is a topical formulation based upon the eutectic mixture of lidocaine and prilocaine and is used in clinical settings to provide pain relief undergoing superficial surgical procedures. The aim of this study is to evaluate effects of EMLA$^{(R)}$ cream, pain - control dressing on the treatment for HF injury wound. Methods: From June 2007 to June 2008, this study was carried out with 10 patients who had HF partial thickness burns. We were applied topically EMLA$^{(R)}$ cream to injured wound with vaseline gauze and 10% calcium gluconate wet gauze dressings. As a principle, in the emergency treatment, partial or complete removal of the bullae along with copious washing with normal saline was done, depending on the degree of HF invasion of the distal digital extremities. The effect of dressing was investigated by visual analogue pain scale. Results: We therefore reviewed 10 cases of HF - induced pain and pain relief treatment principle. The 10 cases who came to the hospital nearly immediately after the injury healed completely without sequelae and EMLA$^{(R)}$ related complications. Conclusion: Proper initial treatment of HF burns are important, if not promptly recognized and properly treated, for produce serious injury. Topical EMLA$^{(R)}$ cream remain a powerful, new advancement for minimizing HF - related pain during dressing procedures. When used appropriately, topical EMLA$^{(R)}$ cream can provide a safe and effective alternative to other forms of HF - pain control treatment.

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.

밀과 밀가루 중 알루미늄포스파이드 잔류량 모니터링 (Monitoring of Aluminium Phosphide Residues in Wheat and Wheat Flour)

  • 최용훈;윤상현;홍혜미;강윤숙;채갑용;이종옥
    • 한국식품과학회지
    • /
    • 제37권4호
    • /
    • pp.532-536
    • /
    • 2005
  • 우리나라에서 사용하는 수입원맥에 잔류하는 알루미늄포스 파이드에 대해 모니터링을 실시하였으며 원맥과 함께 밀가루에 대하여도 포스파인의 잔류량을 모니터링하였다. 묽은 황산과 시료 중의 잔류 포스파인을 반응시켜 발생된 포스파인가스를 GC-NPD를 이용하여 측정하였다. 호주산 밀의 경우 전체 27건의 시료 중 95% 이상이 1 ppb 이하로 검출되었다. 그러나 미국산 밀의 경우 58건중 70% 정도가 1-10ppb 범위에서 검출되었으며, 10ppb가 넘는 시료도 4건이나 되는 등 상대적은 높은 수준의 알루미늄포스파이드 잔류량을 나타내었다. 원료에서 제품으로 포스파인이 이행되는 정도는 14-22%인 것으로 나타났으며 모의실험을 통하여 제분 중에 제거되는 포스파인의 양에는 한계가 있음을 알 수 있었다. 같은 산지의 밀이라도 다양한 농도 범위에서 불규칙한 잔류량을 보이고 있었으며 동일 물량이라 하더라도 포스파인의 잔류량은 균질하지 않음을 확인하여 알루미늄포스파이드제제를 사용하여 훈증소독을 실시할 경우, 훈증방법이나 훈증시간 이외에도 훈증 후의 개방시간, 주위환경 등이 매우 중요함을 알 수 있었다.

소독제 별 표면소독 효과 분석 (Analysis of the surface sterilization effect of disinfectants)

  • 오은비;오윤교;백찬영;송진하;윤소희;오상환
    • 대한치과의료관리학회지
    • /
    • 제7권1호
    • /
    • pp.50-55
    • /
    • 2019
  • The purpose of this study was to compare the number of bacteria before and after the use of surface disinfectants, demonstrate the bactericidal effect of surface disinfectants, and emphasize on the importance of surface disinfectants by recognizing the importance of infection control in dentistry. Chlorhexidine, hydrogen peroxide, ethanol, and chemical disinfectants are commonly used in dentistry. NaOCl was selected as the experimental group, and the bacterium test results obtained by comparing the table without surface sterilization as a control group showed that all disinfectants had an effective bactericidal effect (p<0.05). In the growth inhibition test comparing the experimental and control groups, all results were 100%, proving the effectiveness of surface disinfectants. The results showed that all surface disinfectants preferred and used by medical institutions were effective. Therefore, all surface disinfectants used in the experimental group were effective for surface disinfection for infection control. Dental clinicians should be aware of the necessity of disinfection of surfaces, such as table, chairs, and unit chairs, and make an active effort to ensure that both clinicians and patients are safe from infection.

수돗물의 전기분해에 의해서 생성된 알카리수의 pH가 SS 400강의 부식특성에 미치는 영향 (Effect on Corrosion Characteristics of SS 400 Steel by Alkali Water pH from Electrolysis of City Water)

  • 문경만;류해전;김윤해;정재현;백태실
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.248-255
    • /
    • 2017
  • Many rivers and seas have been affected by environmental contamination. Therefore, city water supplies often require a high-degree purification treatment to provide safe drinking water. However, in order to achieve a high-degree purification treatment, a large amount of chlorine has to be added to sterilize city drinking water. The added chlorine reacts chemically with water and forms hypochlorous and chlorine ions. The hypochlorous ionizes with hypochlorous ions and hydrogen ions. As a result, the city water contains a large amount of chlorine ion. As such, when city water is used with domestic boilers, many kinds of heat exchangers, and the engines of vehicle and ships, there are often corrosion problems. In this study, alkali water was electrochemically made by electrolysis of city water, and corrosion properties between alkali and city water were investigated with an electrochemical method. Most of the chlorine ions are thought to not be contained in the alkali water because the alkali water is created in the cathodic chamber with an electrolysis process. In other words, the chlorine ion can be mostly removed by its migration from a cathodic chamber to an anodic chamber. Moreover, the alkali water also contains a large amount of hydroxide ion. The alkali water indicated relatively good corrosion resistance compared to the city water and the city water exhibited a local corrosion pattern due to the chlorine ion created by a high-degree purification treatment. In contrast, the alkali water showed a general corrosion pattern. Consequently, alkali water can be used with cooling water to inhibit local corrosion by chlorine ions in domestic boilers, various heat exchangers and the engine of ships and for structural steel in a marine structure.

석유화학공장의 염화수소 누출사고를 통한 대기벤트 시스템의 안전성 향상 방안 (A Study on the Safety Improvement in a Venting System from the HCl Release Accident of a Petrochemical Company)

  • 마병철;이근원;임지표;김영철
    • 한국가스학회지
    • /
    • 제16권4호
    • /
    • pp.38-43
    • /
    • 2012
  • 이 논문은 2008년 5월 H석유화학에서 발생한 염화수소 누출사고에 대한 염화수소 누출량 및 피해범위를 정량적으로 산정하고 예방대책을 제시하는데 그 목적이 있다. 염화수소 Column의 안전밸브를 통해 누출된 양은 안전밸브 배출용량, 이상상태방정식 및 기계적 에너지 수지 식을 사용하여 계산한 결과, 최소한 76.8 kg의 염화수소가 누출된 것을 알 수 있었다. 또한, PHAST 등의 프로그램을 활용하여 안전밸브 설치 지점(높이 24 m)으로 부터 약 350 m 떨어진 곳에서의 염화수소 농도를 예측한 결과, 지표면 누출로 가정하여 계산하는 ALOHA 및 K-CARM 프로그램에서는 각각 304 ppm과 1,700 ppm로 예측되었고 누출 높이에서의 지표면 값을 계산하는 PHAST 프로그램에서는 1 ppm 이하로 예측되었다. 위 결과는, 사고당시 염화수소가 안전밸브를 통해 최소 76.8 kg이 누출되었고 누출지점으로부터 약 350 m 떨어진 곳에 있던 근로자들이 1 ppm 이하의 농도의 HCl 가스에 폭로되었음을 말해준다. 또한, 이러한 사고를 예방하기 위해서는 염화수소와 같은 독성물질은 스크러버 등을 거쳐 세정 후 안전하게 대기로 배출(방출) 시켜야 한다는 사실을 제시한다.