• Title/Summary/Keyword: Hydrogen release

Search Result 257, Processing Time 0.027 seconds

Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films (나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향)

  • Kim, Kyung-Tae;Lee, Jung-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

A case of syncope in a villager with hypertrophic cardiomyopathy after hydrogen sulfide exposure by an unauthorized discharge of wastewater

  • Hyeonjun Kim;Seunghyeon Cho;Inho Jung;Sunjin Jung;Won-Ju Park
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.34.1-34.8
    • /
    • 2023
  • Background: Hydrogen sulfide is a toxic substance that humans can be exposed to occupationally, and cases of hydrogen sulfide poisoning of workers in industrial sites are commonly reported. However, there have been no cases of poisoning of the public due to an unauthorized discharge of wastewater, so it is important to describe this incident. Case presentation: In a small village in Jeollanam-do, Republic of Korea, accounts of a terrible stench had been reported. A 26-year-old man who lived and worked in a foul-smelling area was taken to the emergency room with a headache, dizziness, nausea, and repeated syncope. A subsequent police and Ministry of Environment investigation determined that the cause of the stench was the unauthorized discharge of 9 tons of wastewater containing hydrogen sulfide through a stormwater pipe while the villagers were sleeping. The patient had no previous medical history or experience of symptoms. Leukocytes and cardiac markers were elevated, an electrocardiogram indicated biatrial enlargement, left ventricular hypertrophy, and corrected QT interval prolongation. Myocardial hypertrophy was detected on a chest computed tomography scan, and hypertrophic cardiomyopathy was confirmed on echocardiography. After hospitalization, cardiac marker concentrations declined, symptoms improved, and the patient was discharged after 7 days of hospitalization. There was no recurrence of symptoms after discharge. Conclusions: We suspect that previously unrecognized heart disease manifested or was aggravated in this patient due to exposure to hydrogen sulfide. Attention should be paid to the possibility of unauthorized discharge of hydrogen sulfide, etc., in occasional local incidents and damage to public health. In the event of such an accident, it is necessary to have government guidelines in place to investigate health impact and follow-up clinical management of exposed residents.

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.711-714
    • /
    • 2004
  • Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

Drug Release from Ph-sensitive Interpenetrating Polymer Net-works Hydrogel Based on Poly(ethylene glycol) Macromer and Poly (acrylic acid)Prepared by UV Cured Method

  • Kim, In-Sook;Kim, Sung-Ho;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 1996
  • Acrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with acryloyl chloride. Photopolymerization of PEG macromer resulted in the formation of cross-linked PEG network. Interpenetrating polymer networks (IPNs) based on PEG and poly(acrylic acid) (PAA) was obtained via template polymerization of AA to the PEG network by UV curing. The swelling degree of the IPNs hydrogel increased with an increase of pH value due to the association-dissociation between carboxylic acid of PAA and either of PEG through hydrogen bounding. The swelling-deswelling behavior proceeded reversibly for the IPNs upon changing pH. Release of indomethacin from the IPNs demonstrated "on-off" regulation with pH fluctuation.

  • PDF

A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil (물과 토양에서 인의 농도, 탁도 그리고 pH와의 관계에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.304-309
    • /
    • 2011
  • In this research, behaviour of turbidity and phosphorus in water and soil dependent upon pH and a change of water was studied. Phosphorus dissolve rate from turbidity was increased for water if potential of hydrogen was less than pH 4 or more than pH 7. Turbidity release rate from soil was increased with pH. Turbidity release rate from soil was drastically increased for water if potential of hydrogen was more than pH 4. turbidity release rate from soil was stabilized more than pH 6. Dissolved phosphorus was increased from 2 hours to 24 hours and stabilized in 24 hours. Turbidity was reached the peak of 24 hours and decreased from 24 hours to 96 hours. Turbidity and dissolved phosphorus was decreased for water if these samples were changed a overlying water. Behaviour of turbidity was analogous to dissolved phosphorus when potential of hydrogen was increased from pH 6 to pH 10 and a change of overlying water was increased from 1 time to 4 times. These results suggest that phosphorus dissolve rate and turbidity were directiy correlated with pH. These results are of great importance in lakes because most lakes have a pH in the range of pH 7-10.

A Study on the Impact of Protection Layers on Workplace Workers in the Event of a Toxic Substance Release (독성물질 누출 시 방호계층 적용에 따른 사업장 내 근로자 피해 영향 연구)

  • Sun Jae Hwang;Joon Won Lee;Deuk Hwan Kim;Sang Chan Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • Hydrofluoric acid is a less acidic substance than hydrochloric acid, nitric acid, and sulfuric acid, but it is one of the most dangerous substances for humans. In recent years, it has become an indispensable substance in industries such as chemical plants and the semiconductor industry, and although it is a threat to the human body, its use is increasing for various purposes, and the amount of use is constantly increasing due to the expansion and development of the industry. The dangers of hydrogen fluoride have been highlighted since the 2012 accident, which led to a more than fivefold increase in management standards for handling facilities. Hydrogen fluoride converts to hydrofluoric acid when exposed to the air, which can be fatal to humans. This study simulates the effects of a release of a toxic substance in the workplace, even though a protection layer has been provided to minimize the damage caused by the released toxic substance, and recommend ways to control the risk to workers in the event of a release in the workplace.

Distribution of Nutrients in Dae-Cheong Reservoir Sediment

  • Hwang Jong Yeon;Han Eui Jung;Kim Tae Kehn;Kim Shin Jo;Yu Soon Ju;Yoon Young Sam;Jung Yong Soon;Park Pan Wook
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.169-179
    • /
    • 1998
  • This paper was performed to estimate interrelations between humus level of sediments and nutrient release from sediments in Dae-cheong reservoir. For investigations, sediments were sampled in June and October, in 1997 at fish farms, embayment, and the main stream of Dae-cheong reservoir. Items for investigation are as follows; water content, weight loss on ignition(IG), porosities of sediments, contents of element such as hydrogen, nitrogen, carbon, and nutrient release rates. Water contents and porosities were measured to conjecture the physical trait and grain size trait. Weight loss on ignition was measured to determine the contents of organic substance. For determination of the humus level of sediments, carbon and nitrogen contents were measured by elemental analyzer. As a result of elemental analysis, C/N ratio was determined in the range of $3.0\~13.1$. From the elemental analysis, humus level of Dae-cheong reservoir sediment was estimated from mesohumic state to oligotrophic state. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentrations of interstitial water and overlying water were measured. By using the concentration difference between interstitial water and overlying water and using the Fick's diffusion law, the release rates of phosphorus and nitrogen from the sediment samples were calculated. Release rates of nutrients which directly influence to the water quality were $0.05\~8.63mgP/m^2day$ and $4.99\~36.56mgP/m^2day$. It was found that release rate was measured higher in the 1st sampling period than in the 2nd sampling period. For the determination of phosphorus content in sediment, TPs were measured in 807\~1542{\mu}g/g$ in the 1st samling period and $677\~5238{\mu}g/g$ in the End samling period. Phosphorus release rate and phosphorus content were not interrelated each other.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.