• Title/Summary/Keyword: Hydrogen quality

Search Result 396, Processing Time 0.024 seconds

A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter (플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구)

  • Ki, Ho-Beom;Kim, Bong-Soo;Kwak, Yong-Hwan;Kim, Woo-Hyung;Lim, Won-Kyung;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF

A Stydy On Hydrogen Quality International Standards Trend and Countermeasure (수소품질 국제 표준화 동향 및 대응기술에 관한 연구)

  • Lee, Taeck-Hong;Cheon, Young-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.454-460
    • /
    • 2006
  • In the production of hydrogen from various sources like cracking of LPG, LNG, Crude oil, or alkaline water electrolysis, the things that we keep in mind is the entrapment of unexpected impurities in the stream of produced $H_2$. If it is true that we are not able to produce 100% pure $H_2$, then subsequent procedure is the elimination of the impurities and the determination of the concentrations of each constituents in $H_2$ stream. By the way, each country has different constituents in its fuels and unavoidablely it was cost/economy debates between coutries. Thus, in this paper, our goal is to provide current international issues for hydrogen production.

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes (전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산)

  • Lee, Chae-Young;Na, Dong-Chae;Choi, Jae-Min;Kang, Doo-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

A Review of Biofuels Production Technologies from Microalgae (미세조류 유래 바이오연료 생산 기술에 관한 고찰)

  • PARK, JOYONG;KIM, JAE-KON;PARK, CHEUNKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.386-403
    • /
    • 2016
  • Biofuels produced from biomass can be substituted for petroleum fuels due to GHG reduction, sustainability and environmental friendly. The process technologies that convert biomass into biofuels are varied and depend on the feedstocks. Microalgae are considered to be one of the most promising alternative source to the conventional feedstocks for biofuel. Microalgae can be converted to biodiesel, bioethanol, biogas and biojet fuel via thermolchemical and biochemical production technologies. This reviews discusses recent advance in understanding the effects of the characteristics of various processes on the production of biofuels using microalgae. The performances of microalgae based biofuel are compared.

Effect of pH on Continuous Hydrogen Fermentation (연속반응실험에서 수소생성에 대한 pH 영향)

  • Lee, Young-Joon
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • The influences of pH on hydrogen production were also investigated over the pH range from 4.1 to 8.0 at HRT 10 hours. The hydrogen content for the produced gas was changed from 41 to 71% with corresponding pHs throughout this experiment. The produced hydrogen/carbon dioxide ratio was not vary significantly up to 6.0, then steepenly increased with increases in the pH. The maximal hydrogen yield was found to be 3.16 $\ell$/g sucrose at pH 5.0. Acetate production yield increased with increased pH, but butyrate production yield decreased with increased pH. Biomass yield increased with increased pH.

Hydrogen and Carbon Black Production by Pyrolysis of Natural Gas (천연가스 열분해에 의한 수소 및 카본 생산)

  • Yoon, Y.H.;Park, N.K.;Lee, T.J.;Chang, W.C.;Lee, B.G.;Ahn, B.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • The pyrolysis for production of hydrogen and high quality carbon black from natural gas were studied. The reactivities in tubular reactor and FVR(free volume reactor) for the methane pyrolysis were compared, in order to prevent the formation of undesirable carbon product such as pyrocarbon, the FVR was designed. The hydrogen yield and the formation of carbon black from methane pyrolysis in this reactor were investigated at temperature range between 1443 and 1576K. From the result of TEM (transmission electron microscopy) analysis, it was confirmed that the CFC(catalytic filamentous carbon) was formed without pyrocarbon.

Physical Principles of Magnetic Resonance Imaging in Animal (동물에서 자기 공명 영상 진단의 물리적 원리)

  • 김종규
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 1999
  • Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.

  • PDF

Weldability of Al Alloys,Part I ;Cfacking and Porosity (알루미늄 합금의 용접특성 - part I : 균열 및 기공)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 1992
  • A literature review was conducted to survey informations available on the welding metallurgy of aluminum alloys and its effect on fusion weldability, especially on solidification cracking and pore formation. Solidification cracking behavior of Al weld is a complicate matter as compared to other high alloys, where a relatively simple Fe-X(most detrimental elements S, P, B, Si, etc) binary diagram can be successfully applicable. Both additive and synergistic effects of elements should be considered together. A same element play a different role from system to system. Porosity, caused by hydrogen contamination of the weld is one of the most troublesome welding problems. The primary sources of hydrogen are believed to be an absorbed moisture on the filler metal or base metal and in the shielding gas. It is extremely important that reliable quality-control procedures be employed to eliminate all possible sources of hydrogen contamination. Selection of proper process and parameters is sometimes more important than controlling of alloying elements in order to make a defect-free weld.

  • PDF

Development of Microwave-Matrix Reformer for Applying SOFC Stack (SOFC 스택 적용 마이크로웨이브-매트릭스 개질기 개발)

  • AN, JUNE;CHUN, YOUNG NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.534-541
    • /
    • 2021
  • In this study, a novel microwave-matrix reformer was proposed to convert CH4, which is a major component, to a high quality hydrogen energy. And to identify this performance, it was investigated for O2/C ratio, steam feed amount and reformed gas recirculation which are affected for methane conversion and product gas yield. Through the parametric screening studies, optimal operating conditions were that O2/C ratio, steam feed amount and recirculation rate were 1.1, 10 mL/min and 30 L/min. In this conditions, CH4 conversion was 68.1%, H2 selectivity 77.2 and H2/CO ratio 2.62 which are possible applying SOFC stack for RPG (residential power generator).

A Study on the Distribution Characteristics of Sulfur Compounds in Ambient air using Continuous Monitoring Method in Incheon Area

  • Seo, Seok-Jun;Lim, Yong-Jae;Hong, You-deok;Park, Geon-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.128-134
    • /
    • 2015
  • This paper focuses on the applicability of a continuous monitoring method on trace sulfur compounds in the ambient air by TD and GC/PFPD. The target compounds for monitoring include H2S(hydrogen sulfide), Methyl mercaptan, Dimethyl Sulfide, and Dimethyl disulfide. The result of QA/QC on monitoring instruments satisfies all the standards of Odor Measurement and Analysis Method, showing that the reproductivity of the compounds by concentration is within 10%, linearity is above 0.98 of a correlation efficient, method detection limit is 0.16 ppb by MM standard, and recovery rate is over 70%. Monitoring was conducted for two years from March 2006 to February 2008. As a result of the monitoring, the average concentration of H2S was 0.08 ppb, with the maximum concentration at 16.15 ppb. The result indicates that it is reasonable to do continuous monitoring as there appears a spontaneous event of high concentration by the condition of the site during monitoring odor-causing substances. Therefore, it is suggested that the continuous monitoring method used in this paper is appropriate to identify the characteristics of sudden occurrence and concentration variations of sulfur compounds.