• 제목/요약/키워드: Hydrogen production price

검색결과 29건 처리시간 0.022초

국내 광생물학적 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photobiological Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.322-330
    • /
    • 2008
  • This paper deals with an economic evaluation of domestic photobiological hydrogen production. We evaluate the economic feasibility of domestic photobiological hydrogen production utilizing green algae and cyanobacteria. In addition, we make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the price of a photo-bioreactor and the value of solar to hydrogen efficiency. The estimated hydrogen production price of the two-step indirect biophotolysis was 12,099won/kg$H_2$. It is expected that the hydrogen production price by the two-step indirect biophotolysis can be reduced to 2,143won/kg$H_2$ if the solar to hydrogen efficiency is increased to 10% and the price of a photo-bioreactor is decreased to $25/$m^2$. The two-step indirect biophotolysis is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen efficiency and to reduce the prices of the photo-bioreactor and system facilities.

발효에 의한 수소생산의 경제성 평가 (Economic Evaluation of Hydrogen Production by Fermentation)

  • 김봉진;김종욱;박상용
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.145-155
    • /
    • 2008
  • This paper deals with an economic evaluation of hydrogen production by fermentation. We evaluate the economic feasibility of domestic hydrogen production by fermentation utilizing glucose and waste water sludge in terms of hydrogen production prices. In addition, we make some sensitivity analysis of hydrogen prices by changing the values of input factors such as the price of glucose, the capital cost of the hydrogen production system, and the hydrogen production yields. The estimated hydrogen prices of the two-step dark-light hydrogen production by fermentation utilizing glucose was $5,347won/kgH_2$, and the single-step hydrogen production by anaerobic fermentation utilizing waste water sludge was $4,255won/kgH_2$, respectively. It is expected that the hydrogen production price by anaerobic fermentation can be reduced if we produce methane or hydrogen utilizing by-products such as alcohols and organic acids, or the government imposes some legal regulations on the treatment of waste water sludge.

국내 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석 (Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen)

  • 임미숙;방진환;윤영식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

국내 저온수전해 수소생산의 경제성 평가 (Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production)

  • 김봉진;김종욱;고현민
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Scale Factor를 이용한 국내 천연가스 개질식 수소충전소의 규모의 경제 분석 (Analysis of the Economy of Scale for Domestic Steam Methane Reforming Hydrogen Refueling Stations Utilizing the Scale Factor)

  • 김봉진;윤왕래;서동주
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.251-259
    • /
    • 2019
  • The aim of this study is to evaluate the economic feasibility of domestic on-site steam methane reforming (SMR) hydrogen refueling stations. We evaluated the levelized cost of hydrogen (LCOH) for the SMR hydrogen refueling stations, which have production capacities of 100 kg/day (SMR 100), 200 kg/day (SMR 200), and 500 kg/day (SMR 500) utilizing the scale factor. The main results indicated that the LCOH of SMR 100, SMR 200, and SMR 500 were 14,367 won/kg, 11,122 won/kg, and 8,157 won/kg, if the utilizations of hydrogen stations were 70%. These results imply that the production capacity of the domestic SMR hydrogen station should be greater than 500 kg/day to compete with other hydrogen stations when we consider the current sale price of hydrogen at the hydrogen stations.

수도권 수소 공급 계획 수립을 위한 사전 경제성 분석 (An Economic Analysis for Establishing a Hydrogen Supply Plan in the Metropolitan Area)

  • 박혜민;김수현;김병인;이승훈;이혜진;유영돈
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.183-201
    • /
    • 2022
  • In this study, economic feasibility analysis was performed when various hydrogen production and transport technologies were applied to derive hydrogen supply plans by period. The cost of hydrogen may vary depending on several reasons; configuration of the entire cycle supply path from production, storage/transportation, and utilization to the cost that can be supplied to consumers. In this analysis, the hydrogen supply price according to the hydrogen supply route configuration for each period was analyzed for the transportation hydrogen demand in metropolitan area, where the demand for hydrogen is expected to be the highest due to the expansion of hydrogen supply.

바이오가스 기반 수소 생산공정에 대한 경제성 및 환경성 분석 (Techno-Economic Analysis and Life-Cycle Assessment for the Production of Hydrogen from Biogas)

  • 김현우;백영순;원왕연
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.417-429
    • /
    • 2021
  • Due to fossil fuel depletion and environmental pollution, H2 production from organic waste has received an increased attention. In this study, we present an integrated process for the H2 production from biogas and evaluate the economic feasibility and sustainability via rigorous techno-economic analysis (TEA) and life-cycle assessment (LCA). Through the TEA, we determine the minimum H2 selling price using discounted cash flow analysis and investigate the main cost drivers. The environmental impact of the proposed process is quantified via LCA.

한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가 (Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea)

  • 김아연;최창권;천승현;임한권
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.