• Title/Summary/Keyword: Hydrogen pressure control

Search Result 97, Processing Time 0.036 seconds

DC/DC Converter Design for 7kW Fuel Cell (7kW 연료전지용 DC/DC 컨버터 설계)

  • Kim, Ga-In;Shin, Min-Ho;Lee, Jung-Hyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.150-156
    • /
    • 2022
  • This study proposes a design method of fuel cell DC/DC converter using in 5-ton forklift. For efficient hydrogen usage, targeted fuel cell system recirculates discarded hydrogen after fuel cell reaction. Recirculating hydrogen contains much impurities that reduces output power, increasing pressure that can damage the internal fuel cell reaction system. The proposed DC/DC converter effectively converts fuel cell power considering the voltage drop rate to reflect the recirculating hydrogen. Then, frequency control method is used to regulate the current ripple amount for battery and fuel cell hybrid configuration. Proposed power converter system design and control methods are verified in a practical fuel cell system that implements recirculating hydrogen.

Improvement of Microstructural Anisotropy of Nd-Fe-B-Ga-Nb Alloy by the Control of Hydrogen Reaction (수소반응속도 제어에 의한 Nd-Fe-B-Ga-Nb 합금의 미세조직 이방화율 향상에 관한 연구)

  • Lee, S.H.;Kim, D.H.;Yu, J.H.;Lee, D.W.;Kim, B.K.
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used for the sheet motors and the sunroof motors of hybrid or electric vehicles, due to their excellent magnetic properties. Microstructural alignment of HDDR treated powders are mostly depending on the hydrogen reaction in disproportionation step, so the specific method to control hydrogenation reaction is required for improving magnetic properties. In disproportionation step, hydrogenation pressure and reaction time were controlled in the range of 0.15~1.0 atm for 15~180 min in order to control the micorstructural alignment of $Nd_2Fe_{14}B$ phase and, at the same time, to improve remanence of HDDR treated magnet powders. In this study, we could obtain a well aligned anisotropic Nd-Fe-B-Ga-Nb alloy powder having high remanence of 12 kG by reducing hydrogen pressure down to 0.3 atm in disproportionation step.

The Characteristics of Biopellet Produced Upon Reactor Configuration in UASB System (UASB 공법에 있어서 반응조의 형상변화에 따른 입상슬러지의 특성에 관한 연구)

  • Min, Kyung Sok;Ahn, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.679-688
    • /
    • 1994
  • Physicochemical and morphological characteristics of biopellets produced in "control" and modified UASB reactor were investigated to compare the reactor performance with regard to the hydrogen partial pressure. The characteristics of biopellet produced in modified UASB reactor operated with high hydrogen partial pressure were better than those of "control" reactor operated with relatively lower hydrogen partial pressure, therefore the hydrogen partial pressure effected greatly on the formation and stability of the biopellet. Furthermore, pellets from the UASB system with modified settler showed a better settleability and biomass holding capacity. The chemical composition of biopellet was distinctively different from that of common bacterial formula, $C_5H_7O_2N$. Biopellets was composed the large fraction of nitrogen in comparison with common anaerobic microbes. These results implicated the existence possibility of polypeptide-type extracellular polymer. The morphological characterization with SEM showed that microorganisms observed at surface of biopellet produced in modified UASB reactor operated with high $P_{H_2}$ condition were very similar in shape and size to the Methanobrevibactor arboriphilus-$H_2$ utilizing methanogen. The microorganisms was distinguished from those of "control" reactor operated with low $P_{H_2}$ condition. From these results, it could be explained the hydrogen partial pressure effects on pelletization mechanism.

  • PDF

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

A Numerical Analysis for High Performance on DME High Pressure Fuel Pump Using Taguchi Method (Taguchi Method 을 이용한 DME 고압 연료 펌프에 대한 고성능 수치 해석)

  • SAMOSIR, BERNIKE FEBRIANA;CHO, WONJUN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.636-641
    • /
    • 2021
  • Using numerical analysis, various factors influencing the performance development of high-pressure pumps for Dimethyl Ether (DME) engines were identified and the impact of each factor was evaluated using Taguchi method. DME fuels are more compressive than diesel fuels and have the lower heat generation, so it is necessary to increase the size of the plunger and speed (RPM) of the pump as well. In addition, it is necessary to change the shape and design of control valve to control the discharge flow and pressure. In this study, various variables affecting the performance and flow rate increase of high-pressure pumps for DME engines are planned using Taguchi method, and the best design method is proposed using correlation of the most important variables. As a result, we were able to provide the design value needed for a six-liter engine and provide optimal conditions. The best combination factors to optimize the flow rate at RPM 2,000 and diameter plunger with 20 mm. The regression equation can also be used to optimize the flow rate; -8, 13+0, 2552 RPM +54, 17 diam. Plunger.

Combustion Control through the DME Injection Timing in the Hydrogen-DME Partially Premixed Compression Ignition Engine (DME 분사 시기 조절을 통한 수소-DME 부분 예혼합 압축착화 연소 제어)

  • Jeon, Jeeyeon;Bae, Choongsik
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Hydrogen-dimethy ether(DME) partially premixed compression ignition(PCCI) engine combustion was investigated in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME was injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME inejction timing was varied to find the optimum PCCI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. As the DME injection was retarded, the CO and HC emissions were decreased due to high combustion efficiency. NOx emissions were increased due to the high in-cylinder temperature. When DME were injected at $-30^{\circ}CA$ aTDC, reduction of HC, CO and NOx emissions was possible with high value of IMEP.

Development of In-tank Pressure Regulator and Solenoid Valve (내장형 레귤레이터 및 솔레노이드 개발)

  • Lee, Jun-Hyuk;Lim, Tae-Hoo;Kim, Kyung-Nam;Shim, Sang-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.188-191
    • /
    • 2007
  • This paper shows the Development of In-tank pressure regulator and Solenoid Valve used in FCV(Fuel Cell Vehicle). We have developed new type of Regulator and Solenoid through analysis of the structure and characteristics of component of FCS(Fuel Cell System) from the advanced technology. Now it is possible to localize the component by making use of the development of Regulator and Solenoid made by us. Regulator and Solenoid is a equipment to control hydrogen pressure supplied into a stack. Therefore, outlet pressure, a flow of fluid and temperature are important parameters according to a inlet pressure. And leak test, endurance test and burst test should be done to guarantee the performance and safety of Regulator and Solenoid used in the fuel of high pressure. Also, Hydrogen friendly materials are applied to inner parts of the Regulator, Solenoid and weight reduction is done to cost saving in part not related to performance. As a result, we have proven the good performance and reliability in endurance of Regulator, Solenoid and will make an development in performance as well as durability to ensure industrialization.

  • PDF

An Experimental Study on the FMEA Evaluation of Non-metallic Materials in High-Pressure Hydrogen Facility (고압 수소설비용 비금속부품 소재의 FMEA 평가를 통한 실험적 연구)

  • Ahn, Jeongjin;Kim, Wanjin;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2019
  • According to South Korea's policy of supplying eco-friendly hydrogen vehicles, related industries are actively conducting research on the development of hydrogen cars and hydrogen charging station infrastructure. On the other hand, there is a lack of empirical research and assessment of the risk of non-metallic materials (such as liners, seals, gaskets) for classified materials that directly affect the durability and reliability of hydrogen vehicles and hydrogen charging stations. In this study, the risk factors for liners and seals of non-metallic parts used in high-pressure hydrogen installations were derived using FMEA, and the RPN values were calculated by converting the severity, frequency of occurrence and degree of detection into scores. The maximum value of the RPN 600, minimum value 63, average value 278.5 was calculated and periodic control of the liner and seal was identified as important. In addition, through hydrogen soakage and oxygen aging tests for non-metallic rubber products, physical test values that can be used as basic data were presented.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

The Importance of Corrosion Control and Protection Technology in the Refinery

  • Kim, Byong Mu;Oh, Sung Lyong
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2007
  • This paper presents the importance of corrosion control and protection technology with a real case study of heater tube rupture damaged by High temperature H2S-H2 corrosion in the refinery. The heater was operated at the Hydrocracking unit and the operation temperature and pressure was $340^{\circ}C$ and $18kg/cm^{3}$ respectively. Top side of the convection tube was thinned by high temperature hydrogen sulfide and hydrogen gas as a uniform corrosion and finally ruptured under operation pressure. Damaged area (Convection tube zone) was blocked by protection wall, so it was impossible to inspect with conventional nondestructive examination. Instead the elbow area which is out of the protection wall was inspected regularly to evaluate the corrosion rate of convection tube indirectly. However the operation temperature and the phase of the process stream was different between inside the chamber and outside the chamber. As a result, it caused severe corrosion to the horizontal convection tube inside the chamber comparing to the elbow outside the chamber. Finally convection tube was corroded more rapidly than the elbow and ruptured after 13 years operation. Because of the rupture, the heater was totally burned and the operation was stopped for 3 months until it has been reconstructed. To prevent this kind of corrosion problem and accident, corrosion control should be strengthened and protection technology should be improved.