• 제목/요약/키워드: Hydrogen polyoxide

검색결과 2건 처리시간 0.018초

H2On-H2Om (n=1-4, m=1-4) 이중합체의 수소결합에 따른 구조적 특성 및 결합에너지에 관한 이론 연구 (Theoretical Study on the Hydrogen-Bonding Effect of H2On-H2Om (n=1-4, m=1-4) Dimers)

  • 송희성;서현일;신창호;김승준
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.117-124
    • /
    • 2015
  • Hydrogen polyoxide, $H_2O_n-H_2O_m$(n=1-4, m=1-4) 이중합체(dimer)의 분자 구조 변화에 따른 수소결합(H-bonding) 효과를 순 이론적(ab initio) 방법과 밀도 범함수 이론(DFT)으로 계산하였다. 분자 구조는 B3LYP, CAM-B3LYP, MP2의 양자역학적 방법들을 사용하여 최적화하였으며, 진동주파수를 계산하여 최저에너지(true local minimum) 구조인 것을 확인하였다. 보다 정확한 수소결합 에너지(${\Delta}E$) 계산을 위하여 CCSD(T) 이론수준에서 한 점(single-point) 에너지 계산을 하였으며, 영점 진동에너지(ZPVE) 보정과 바탕집합 중첩에러(BSSE) 보정을 하였다. CCSD(T)/cc-pVTZ 이론 수준에서 $H_2O_4-H_2O_3$이 8.18 kcal/mol로 가장 강한 결합을 나타내었으며, 물 이중합체($H_2O-H_2O$)는 3.00 kcal/mol로 가장 약한 결합에너지를 나타내었다.

H2O3과 물(H2O) 클러스터들의 분자구조와 열역학적 안정성에 대한 이론적 연구 (Theoretical Investigation for the Structures and Binding Energies of H2O3 and Water (H2O) Clusters)

  • 서현일;김종민;송희성;김승준
    • 대한화학회지
    • /
    • 제61권6호
    • /
    • pp.328-338
    • /
    • 2017
  • $H_2O_3(H_2O)_n$ (n=1-5) 클러스터들에 대해서 밀도 범함수 이론(DFT)과 순 이론(ab initio) 방법을 cc-pVD(T)Z 바탕집합(basis set)과 함께 사용하여 가능한 여러 구조를 최적화하고 결합에너지와 조화진동수를 계산하였다. $H_2O_3$ 단량체의 경우 CCSD(T)/ccp-VTZ 이론 수준에서 트랜스(trans) 구조가 시스(cis) 구조보다 더 안정한 것으로 계산되었다. 클러스터에 대해서는 MP2/cc-pVTZ 수준까지 분자 구조를 최적화하고 열역학적으로 가장 안정한 분자구조를 예측하였다. 클러스터의 결합에너지는 CCSD(T)//MP2 수준에서 영점 진동에너지(ZPVE)와 바탕집합 중첩에러(BSSE)를 모두 보정한 후 n=1일 때 -6.39 kcal/mol 계산 되었으며 이 같은 결과는 $H_2O$$H_2O_2$의 물 클러스터 보다 더 좋은 수소 주게 즉 산(acid)으로서 작용할 것으로 기대된다. 물 분자 1개 당 평균 결합에너지는 n=2의 경우 8.25 kcal/mol, n=3일 때 7.22 kcal/mol, n=4의 경우 8.50 kcal/mol 그리고 n=5의 경우 8.16 kcal/mol로 계산되었다.