Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.6.328

Theoretical Investigation for the Structures and Binding Energies of H2O3 and Water (H2O) Clusters  

Seo, Hyun-il (Department of Chemistry, HanNam University)
Kim, Jong-Min (Department of Chemistry, HanNam University)
Song, Hui-Sung (Department of Chemistry, HanNam University)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Abstract
The density functional theory(DFT) and ab initio calculations have been applied to investigate hydrogen interaction of $H_2O_3(H_2O)_n$ clusters(n=1-5). The structures, IR spectra, and H-bonding energies are calculated at various levels of theory. The $trans-H_2O_3$ monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T)/cc-pVTZ level of theory. For clusters, the geometries are optimized at the MP2/cc-pVTZ level of theory. The binding energy of $H_2O_3-H_2O$ cluster is predicted to be -6.39 kcal/mol at the CCSD(T)//MP2/cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. This result implies that $H_2O_3$ is a stronger proton donor(acid) than either $H_2O$ or $H_2O_2$. The average binding energies per $H_2O$ are predicted to be 8.25 kcal/mol for n=2, 7.22 kcal/mol for n=3, 8.50 kcal/mol for n=4, and 8.16 kcal/mol for n=5.
Keywords
Hydrogen polyoxide; $H_2O_3(H_2O)_n$ clusters; Hydrogen bond; DFT;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Levanov, A. V.; Sakharov, D. V.; Dashkova, A. V.; Antipenko, E. E.; Lunin, V. V. Eur. J. Inorg. Chem. 2011, 33, 5144.
2 Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.   DOI
3 Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. Environ. A-gen. 1992, 26, 1805   DOI
4 Wentworth, Jr. P.; Wentworth, A. D.; Zhu, X.; Wilson, I. A.; Janda, K. D.; Eschenmoser, A.; Lerner, R. A. Proc. Natl. Acad. Sci. 2003, 100, 1490.   DOI
5 Shukla, P. K.; Mishra, P. C. J. Phys. Chem. B 2007, 111, 4603.   DOI
6 Berthelot, M. Compt. Rend. 1880, 90, 656.
7 Bielski, B. H. J.; Schwarz, H. A. J. Phys. Chem. 1968, 72, 3836.   DOI
8 Plesnicar, B. Acta Chim. Slov. 2005, 52, 1.
9 Engdahl, A.; Nelander, B. Science 2002, 295, 482.   DOI
10 Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15308.   DOI
11 Wu, A.; Cremer, D.; Gauss, J. J. Phys. Chem. A 2003, 107, 8737.   DOI
12 Plesnicar, B.; Tuttle, T.; Cerkovnik, J.; Cremer, D. J. Am. Chem. Soc. 2003, 125, 11553.   DOI
13 Lesko, T. M.; Colussi, A. J.; Hoffmann, M. R. J. Am. Chem. Soc. 2004, 126, 4432.   DOI
14 Tuttle, T.; Cerkovnik, J.; Plesnicar, B.; Cremer, D. J. Am. Chem. Soc. 2004, 126, 16093.   DOI
15 Hollman, D. S.; Schaefer III, H. F. J. Chem. Phys. 2012, 136, 084302.   DOI
16 Maetzke, A.; Jensen, S. J. K. Chem. Phys. Lett. 2006, 425, 40.   DOI
17 Cerkovnik, J.; Tuttle, T.; Kraka, E.; Lendero, N.; Plesnicar, B.; Cremer, D. J. Am. Chem. Soc. 2006, 128, 4090.   DOI
18 Denis, P. A.; Ornella, F. R. J. Phys. Chem. A 2009, 113, 499.   DOI
19 Levanov, A. V.; Oksana, Y. I.; Ewald, E. A.; Valerii, V. L. Chem. Phys. 2015. 447, 10.   DOI
20 Kovacic, S.; Koller, J.; Janez Cerkovnik, J.; Tell Tuttle, T.; Plesnicar, B. J. Phys. Chem. A 2008, 112, 8129.
21 Solís-Calero, C.; Ortega-Castro, J.; Munoz.; F. J. Phys. Chem. C 2011, 115, 22945.   DOI
22 Cannon, D.; Tuttle, T.; Koller, J.; Plesnicar, B. Comp. Theor. Chem. 2013, 1010, 19.   DOI
23 Aloisio, S.; Francisco, J. S. J. Am. Chem. Soc. 1999, 121, 8592.   DOI
24 Chalmet, S.; Ruiz-Lopez, M. F. ChemPhysChem. 2006, 7, 463.   DOI
25 Suma, K.; Sumiyoshi, Y.; Endo, Y. J. Am. Chem. Soc. 2005, 127, 14998.   DOI
26 Liang, T.; Raston, P. L.; Douberly, G. E. ChemPhysChem. 2013, 14, 764.   DOI
27 Anglada, J. M.; Hoffman, G. J.; Slipchenko, L. Y.; Costta, M. M.; Ruiz-Lopez, M. F.; Francisco, J. S. J. Phys. Chem. A 2013, 117, 10381.   DOI
28 Kulkarni, S. A.; Bartolotti, L. J.; Pathak, R. K. Chem. Phys. Lett. 2003, 372, 620.   DOI
29 Becke, A. D. J. Chem. Phys., 1993, 98, 5648.   DOI
30 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.   DOI
31 Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.   DOI
32 Kulkarni, A. D.; Pathak, R. K.; Bartolotti, L. J. J. Phys. Chem. A 2005, 109, 4583.   DOI
33 Boys, S. F.; Bernardi, F.; Mol. Phys. 1970, 19, 553.   DOI
34 Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J.Y.; Kim, K. S.; Ha, T.; Jang, J. H.; Lee, J. G.; Lee, H. J. Chem. Phys. 1999, 111, 5838.   DOI
35 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
36 Hincapie, G.; Acelas, N.; Castano, M.; David, J.; Restrepo, A. J. Phys. Chem. A. 2010, 114, 7809.   DOI
37 Song, H. S.; Seo, H. I.; Shin, C. H.; Kim, S. J. J. Kor. Chem. Soc. 2015, 59, 117.   DOI
38 Martins-Costa, M.; Anglada, J. M.; Ruiz-Lopez, M. F. Int. J. Quantum. Chem. 2011, 111, 1543.   DOI
39 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
40 Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.   DOI