• Title/Summary/Keyword: Hydrogen mitigation

Search Result 34, Processing Time 0.028 seconds

Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in dogs

  • Wang, Shuang;Liu, XingYao;Liu, Yun
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.72.1-72.14
    • /
    • 2022
  • Background: The treatment of acute kidney injury (AKI), a common disease in dogs, is limited. Therefore, an effective method to prevent AKI in veterinary clinics is particularly crucial. Objectives: Hydrogen sulfide (H2S) is the third gaseous signal molecule involved in various physiological functions of the body. The present study investigated the effect of H2S on cisplatin-induced AKI and the involved mechanisms in dogs. Methods: Cisplatin-injected dogs developed AKI symptoms as indicated by renal dysfunction and pathological changes. In the H2S-treated group, 50 mM sodium hydrosulfide (NaHS) solution was injected at 1 mg/kg/h for 30 min before cisplatin injection. After 72 h, tissue and blood samples were collected immediately. We performed biochemical tests, optical microscopy studies, analysis with test kits, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. Results: The study results demonstrated that cisplatin injection increased necroptosis and regulated the corresponding protein expression of receptor interacting protein kinase (RIPK) 1, RIPK3, and poly ADP-ribose polymerase 1; furthermore, it activated the expressions of inflammatory factors, including tumor necrosis factor-alpha, nuclear factor kappa B, and interleukin-1β, in canine kidney tissues. Moreover, cisplatin triggered oxidative stress and affected energy metabolism. Conversely, an injection of NaHS solution considerably reduced the aforementioned changes. Conclusions: In conclusion, H2S protects the kidney from cisplatin-induced AKI through the mitigation of necroptosis and inflammation. These findings provide new and valuable clues for the treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics.

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Ayyaru, Sivasankaran;Ahn, Young-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.199-209
    • /
    • 2018
  • Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Investigation of odor Release from Combined Sewer (합류식 하수도의 악취발생 실태 연구)

  • Gil, Kyung-Ik;Shin, Geon-Cheol;Im, Ji-Yeol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.185-191
    • /
    • 2010
  • This study investigates the odor from combined sewer in urban areas and major odor-causing facilities. Monitorings are conducted in specific areas that have representative characteristics. In combined sewer in urban areas, the real-time monitorings on sulfur, complex odor and specified odor are conducted. And in major odor-causing facilities, the real-time monitorings on complex odor, specified odor are conducted. Odor from combined sewer in urban area is affected by the changes on floating population and the effluent of the septic tank. Also major odor-causing facilities are largely affected by the effluent of the septic tank. The major odor-causing substances are found to be hydrogen sulfide($H_2S$) and methyl mercaptan. To reduce the odor from combined sewer, improvement of effluent from the septic tank and reduction of sulfur compounds have to be done.

Efficient Management of the pH of the Wet Scrubber Washing Water for Risk Mitigation (리스크 완화를 위한 Wet Scrubber 세정수 pH의 효율적 관리)

  • Joo, Dong-Yeon;Seoe, Jae Min;Kim, Myung-Chul;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Wet Scrubber reacts the incoming pollutant gas with cleaning water (water + absorbent) to absorb pollutants and release the clean air to the atmosphere. Wet scrubbers and packed tower scrubbers using this principle are widely used in businesses that emit acid gases. In particular, in the etching process using hydrochloric acid (HCl), alkaline washing water (NaOH) having a pH of about 8 to 11 is used to absorb a large amount of acid gas. However, These salts are attached to the injection nozzle (nozzle), filling material (packing), and the demister (Demister), causing air pollution, human damage, and inoperability due to clogging and acid gas discharge. Therefore, In this study, an improvement plan was proposed to manage the washing water with pH 3~4 acidic washing water. The test method takes samples from the Wet Scrubber flue measurement laboratory twice a month for 1 year. Hydrogen chloride (HCl) concentration (ppm) was measured, and nozzle clogging and scale conditions were measured, compared, and analyzed through a differential pressure gauge and a pressure gauge. As a result of the check, it was visually confirmed that the scale was reduced to 50% or less in the spray nozzle, filler, and demister. In addition, the emission limit of hydrogen chloride in accordance with the Enforcement Regulation of the Air Quality Conservation Act [Annex 8] met 3 ppm or less. Therefore, even if the washing water is operated in an acidic pH range of 3 to 4, it is expected to reduce air pollution and human damage due to clogging of internal parts, and it is expected to reduce maintenance costs such as regular cleaning or replacement of parts.

A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

  • Chang, Hyun-Young;Kim, Jong-Sung;Jin, Tae-Eun
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-32
    • /
    • 2007
  • The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions.

Performance evaluation of Accident Tolerant Fuel under station blackout accident in PWR nuclear power plant by improved ISAA code

  • Zhang, Bin;Gao, Pengcheng;Xu, Tao;Gui, Miao;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2475-2490
    • /
    • 2022
  • The Accident Tolerant Fuel (ATF) is a new concept of fuel, which can not only withstand the consequences of the accident for a longer time, but also maintain or improve the performance under operating conditions. ISAA is a self-developed severe accident analysis code, which uses modular structures to simulate the development processes of severe accidents in nuclear plants. The basic version of ISAA is developed based on UO2-Zr fuel. To study the potential safety gain of ATF cladding, an improved version of ISAA, referred to as ISAA-ATF, is introduced to analyze the station blackout accident of PWR using ATF cladding. The results show that ATF cladding enable the core to maintain a longer time compared to zirconium alloy cladding, thereby enhancing the accident mitigation capability. Meanwhile, the generation of hydrogen is significantly reduced and delayed, which proves that ATF can improve the safety characteristics of the nuclear reactor.

Performance evaluation of an improved pool scrubbing system for thermally-induced steam generator tube rupture accident in OPR1000

  • Juhyeong Lee;Byeonghee Lee;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1513-1525
    • /
    • 2024
  • An improved mitigation system for thermally-induced steam generator tube rupture accidents was introduced to prevent direct environmental release of fission products bypassing the containment in the OPR1000. This involves injecting bypassed steam into the containment, cooling, and decontaminating it using a water coolant tank. To evaluate its performance, a severe accident analysis was performed using the MELCOR 2.2 code for OPR1000. Simulation results show that the proposed system sufficiently prevented the release of radioactive nuclides (RNs) into the environment via containment injection. The pool scrubbing system effectively decontaminated the injected RN and consequently reduced the aerosol mass in the containment atmosphere. However, the decay heat of the collected RNs causes re-vaporization. To restrict the re-vaporization, an external water source was considered, where the decontamination performance was significantly improved, and the RNs were effectively isolated. However, due to the continuous evaporation of the feed water caused by decay heat, a substantial amount of steam is released into the containment. Despite the slight pressurization inside the containment by the injected and evaporated steam, the steam decreased the hydrogen mole fraction, thereby reducing the possibility of ignition.

Emissions of Odor, Ammonia, Hydrogen Sulfide, and Volatile Organic Compounds from Shallow-Pit Pig Nursery Rooms

  • Kafle, Gopi Krishna;Chen, Lide
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.76-86
    • /
    • 2014
  • Purpose: The objective of this study was to measure emissions of gases (ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and carbon dioxide ($CO_2$)), volatile organic compounds (VOC) and odor from two shallow pit pig nursery rooms. Gas and odor reduction practices for swine operations based on the literature were also discussed. Methods: This study was conducted for 60 days at a commercial swine nursery facility which consisted of four identical rooms with mechanical ventilations. Two rooms (room 1 (R1) and room 2 (R2)) with different pig numbers and ventilation rates were used in this study. The pig manure from both the R1 and R2 were characterized. Indoor/outdoor temperatures, ventilation rates/duration, $NH_3$, $H_2S$, $CO_2$, and VOC concentrations of the ventilation air were measured periodically (3-5 times/week). Odor concentrations of the ventilations were measured two times on two days. Three different types of gas and odor reduction practices (diet control, chemical method, and biological method) were discussed in this study. Results: The volatile solids to total solids ratio (VS/TS) and crude protein (CP) value of pig manure indicated the pig manure had high potential for gas and odor emissions. The $NH_3$, $H_2S$, $CO_2$ and VOC concentrations were measured in the ranges of 1.0-13.3, 0.1-5.7, 1600-3000 and 0.0-1.83 ppm, respectively. The $NH_3$ concentrations were found significantly higher than $H_2S$ concentrations for both rooms. The odor concentrations were measured in the range of $2853-4432OU_E/m^3$. There was significant difference in odor concentrations between the two rooms which was due to difference in pig numbers and ventilation duration. The literature studies showed that simultaneous use of dietary control and biofiltration practices will be more effective and environmentally friendly for gas and odor reductions from pig barns. Conclusions: The gas and odor concentrations measured in the ventilation air from the pig rooms indicate an acute need for using gas and odor mitigation technologies. Adopting diet control and biofiltration practices simultaneously could be the best option for mitigating gas and odor emissions from pig barns.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.